CREST and 4th Ritsumeikan-Florence Workshop on Risk Simulation and Related Topics Beppu, Japan, March 2012 Monique Jeanblanc, UEVE

Financial support from Fédération Bancaire Française

Lectures on Credit Risk

- 1. Models for single default
- 2. Contagion models
- 3. Credit derivatives

Some remarks

Assume that there exists a traded asset with price S, an \mathbb{F} -adapted process, and that the market is arbitrage free, using \mathbb{G} adapted strategies. Assume furthermore than the interest rate if \mathbb{F} adapted. Then there exists a probability measure \mathbb{Q} , equivalent to \mathbb{P} such that $Se^{\int_0^t r_s ds}$ is a \mathbb{G} martingale, hence an \mathbb{F} martingale. If the market where S is traded is complete, immersion property holds true under \mathbb{Q} and

$$\mathbb{Q}(\tau > t | \mathcal{F}_t) = \mathbb{Q}(\tau > t | \mathcal{F}_\infty)$$

If the market where S is traded is incomplete, immersion property holds true under some \mathbb{Q} .

If we are dealing only with defaultable asset, one can work in a general setting In that case, a quite general assumption is the existence of a density under \mathbb{P} , i.e.,

$$\mathbb{P}(\tau > \theta | \mathcal{F}_t) = \int_{\theta}^{\infty} g_t(u) \nu(du)$$

where ν has no atoms.

Then,

- Immersion property is equivalent to $g_t(u) = g_u(u)$ for t > u
- $G_t = m_t \int_0^t p_s(s)\nu(ds)$ where *m* is an \mathbb{F} -martingale
- $H_t \int_0^t \frac{p_s(s)}{G_s} \nu(ds)$ is a \mathbb{G} martingale
- Y is a \mathbb{G} martingale $(Y_t = y_t \mathbb{1}_{t < \tau} + y_t(\tau) \mathbb{1}_{\tau \le t})$ if and only if for any u, the processes $y_t(u), t \ge u$) are \mathbb{F} martingales $\mathbb{E}(Y_t | \mathcal{F}_t) = y_t G_t + \int_t^\infty y_t(s) g_t(s) \nu(ds)$ is an \mathbb{F} martingale

• If W is a \mathbb{F} -Brownian motion, then

$$W_t = \widetilde{W}_t + \int_0^{t \wedge \tau} \frac{d\langle x, G \rangle_s}{G_{s-}} + \int_{t \wedge \tau}^t \frac{d\langle x, g_{\cdot}(\tau) \rangle_s}{g_{s-}(\tau)},$$

where W is a \mathbb{G} -Brownian motion.

Credit derivatives

- 1. Dynamics of corporate bonds
- 2. CDS
- 3. Hedging
- 4. Swaptions

A generic defaultable claim (X, A, Z, τ) consists of:

- 1. A promised contingent claim X representing the payoff received by the holder of the claim at time T, if no default has occurred prior to or at maturity date T.
- 2. A process A representing the dividends stream prior to default.
- 3. A recovery process Z representing the recovery payoff at time of default, if default occurs prior to or at maturity date T.
- 4. A random time τ representing the default time.

Dynamics of corporate bonds in a Cox Model

Let B(t,T) be the price at time t of a default-free bond paying 1 at maturity T satisfies

$$B(t,T) = \mathbb{E}_{\mathbb{Q}}\left(\exp\left(-\int_{t}^{T} r_{s} \, ds\right) \middle| \mathcal{F}_{t}\right)$$

where \mathbb{Q} is the risk-neutral probability.

Let B(t,T) be the price at time t of a default-free bond paying 1 at maturity T satisfies

$$B(t,T) = \mathbb{E}_{\mathbb{Q}}\left(\exp\left(-\int_{t}^{T} r_{s} \, ds\right) \middle| \mathcal{F}_{t}\right)$$

where $\mathbb Q$ is the risk-neutral probability.

The market price D(t,T) of a defaultable zero-coupon bond with maturity T is

$$D(t,T) = \mathbb{E}_{\mathbb{Q}}\left(\mathbbm{1}_{\{T<\tau\}} \exp\left(-\int_{t}^{T} r_{s} \, ds\right) \middle| \mathcal{G}_{t}\right)$$
$$= \mathbbm{1}_{\{\tau>t\}} \mathbb{E}_{\mathbb{Q}}\left(\exp\left(-\int_{t}^{T} [r_{s}+\lambda_{s}^{\mathbb{Q}}] \, ds\right) \middle| \mathcal{F}_{t}\right).$$

Promised payoff:

Let $X \in \mathcal{F}_T$

$$\mathbb{E}_{\mathbb{Q}}\left(X\mathbb{1}_{T<\tau}\exp-\int_{t}^{T}r_{s}ds|\mathcal{G}_{t}\right)=\mathbb{1}_{t<\tau}\mathbb{E}_{\mathbb{Q}}\left(X\exp-\int_{t}^{T}(r_{s}+\lambda_{s})ds|\mathcal{F}_{t}\right)$$

 $\lambda(=\lambda^{\mathbb{Q}})$ is also called the **spread**.

Recovery paid at Maturity

We consider a contract which pays Z_{τ} at date T, if $\tau \leq T$ where Z is an \mathbb{F} -adapted process and no payment in the case $\tau > T$. We also assume that the interest rate is null. The price at time t of this contract is

$$S_t = \mathbb{E}_{\mathbb{Q}}(Z_\tau 1_{\tau \leq T} | \mathcal{G}_t)$$
$$= \int_0^t Z_u dH_u + L_t \left(-\int_0^t Z_u e^{-\Lambda_u} \lambda_u du + m_t^Z \right)$$

where $m_t^Z = \mathbb{E}_{\mathbb{Q}}(\int_0^T Z_u e^{-\Lambda_u} \lambda_u du | \mathcal{F}_t)$ is an \mathbb{F} (hence a \mathbb{G}) martingale and $L_t = \mathbb{1}_{t < \tau} e^{\Lambda_t}$.

Recovery paid at Maturity

We consider a contract which pays Z_{τ} at date T, if $\tau \leq T$ where Z is an \mathbb{F} -adapted process and no payment in the case $\tau > T$. We also assume that the interest rate is null. The price at time t of this contract is

$$S_t = \mathbb{E}_{\mathbb{Q}}(Z_\tau 1_{\tau \leq T} | \mathcal{G}_t)$$
$$= \int_0^t Z_u dH_u + L_t \left(-\int_0^t Z_u e^{-\Lambda_u} \lambda_u du + m_t^Z \right)$$

where $m_t^Z = \mathbb{E}_{\mathbb{Q}}(\int_0^T Z_u e^{-\Lambda_u} \lambda_u du | \mathcal{F}_t)$ is an \mathbb{F} (hence a \mathbb{G}) martingale and $L_t = \mathbb{1}_{t < \tau} e^{\Lambda_t}$.

We assume here that \mathbb{F} -martingales are continuous. From $dL_t = -L_{t-}dM_t$ and integration by parts formula we deduce that

$$dS_t = (Z_t - S_{t-}) dM_t + L_t dm_t^Z$$

Recovery paid at Default

If the payment Z is done at time τ

$$S_t = \mathbb{1}_{t < \tau} \mathbb{E}_{\mathbb{Q}}(Z_\tau \mathbb{1}_{t < \tau < T} | \mathcal{G}_t) = L_t \left(-\int_0^t Z_u e^{-\Lambda_u} \lambda_u du + m_t^Z \right)$$

where $m_t^Z = \mathbb{E}_{\mathbb{Q}}(\int_0^T Z_u e^{-\Lambda_u} \lambda_u du | \mathcal{F}_t).$

Recovery paid at Default

If the payment Z is done at time τ

$$S_t = \mathbb{1}_{t < \tau} \mathbb{E}_{\mathbb{Q}}(Z_\tau \mathbb{1}_{t < \tau < T} | \mathcal{G}_t) = L_t \left(-\int_0^t Z_u e^{-\Lambda_u} \lambda_u du + m_t^Z \right)$$

where $m_t^Z = \mathbb{E}_{\mathbb{Q}}(\int_0^T Z_u e^{-\Lambda_u} \lambda_u du | \mathcal{F}_t)$. Then,

$$dS_t = -Z_t \lambda_t (1 - H_t) dt - S_{t-} dM_t + L_t dm_t^Z$$

= $(Z_t - S_{t-}) dM_t + L_t dm_t^Z - Z_t dH_t.$

The process $S_t + \int_0^t Z_s (1 - H_s) \lambda_s ds$ is a \mathbb{G} martingale, as well as $S_t + Z_\tau H_t$.

The savings account $Y_t^0 = 1$, a risky asset with risk-neutral dynamics $dY_t = Y_t \sigma dW_t$ and a DZC of maturity T with price D(t,T) are traded. The reference filtration is that of a Brownian motion W.

The savings account $Y_t^0 = 1$, a risky asset with risk-neutral dynamics $dY_t = Y_t \sigma dW_t$ and a DZC of maturity T with price D(t,T) are traded. The reference filtration is that of a Brownian motion W. One has

 $D(t,T) = L_t \mathbb{Q}(\tau > T | \mathcal{F}_t) = L_t m_t$

with $m_t = \mathbb{Q}(\tau > T | \mathcal{F}_t) = \mathbb{E}_{\mathbb{Q}}(e^{-\Lambda_T} | \mathcal{F}_t).$

The savings account $Y_t^0 = 1$, a risky asset with risk-neutral dynamics $dY_t = Y_t \sigma dW_t$ and a DZC of maturity T with price D(t,T) are traded. The reference filtration is that of the Brownian motion W. One has

 $D(t,T) = L_t \mathbb{Q}(\tau > T | \mathcal{F}_t) = L_t m_t$

with $m_t = \mathbb{Q}(\tau > T | \mathcal{F}_t) = \mathbb{E}_{\mathbb{Q}}(e^{-\Lambda_T} | \mathcal{F}_t).$ The price of a defaultable call with payoff $\mathbb{1}_{T < \tau}(Y_T - K)^+$ is

$$C_t = \mathbb{E}_{\mathbb{Q}}(\mathbb{1}_{T < \tau}(Y_T - K)^+ | \mathcal{G}_t) = \mathbb{1}_{t < \tau} e^{\Lambda_t} \mathbb{E}_{\mathbb{Q}}(e^{-\Lambda_T}(Y_T - K)^+ | \mathcal{F}_t)$$

The savings account $Y_t^0 = 1$, a risky asset with risk-neutral dynamics $dY_t = Y_t \sigma dW_t$ and a DZC of maturity T with price D(t,T) are traded. The reference filtration is that of the Brownian motion W. One has

 $D(t,T) = L_t \mathbb{Q}(\tau > T | \mathcal{F}_t) = L_t m_t$

with $m_t = \mathbb{Q}(\tau > T | \mathcal{F}_t) = \mathbb{E}_{\mathbb{Q}}(e^{-\Lambda_T} | \mathcal{F}_t).$ The price of a defaultable call with payoff $\mathbb{1}_{T < \tau}(Y_T - K)^+$ is

$$C_t = \mathbb{E}_{\mathbb{Q}}(\mathbb{1}_{T < \tau}(Y_T - K)^+ | \mathcal{G}_t) = \mathbb{1}_{t < \tau} e^{\Lambda_t} \mathbb{E}_{\mathbb{Q}}(e^{-\Lambda_T}(Y_T - K)^+ | \mathcal{F}_t)$$

$$= L_t m_t^Y$$

with $m_t^Y = \mathbb{E}_{\mathbb{Q}}(e^{-\Lambda_T}(Y_T - K)^+ | \mathcal{F}_t).$

The savings account $Y_t^0 = 1$, a risky asset with risk-neutral dynamics $dY_t = Y_t \sigma dW_t$ and a DZC of maturity T with price D(t,T) are traded. The reference filtration is that of the Brownian motion W. One has

 $D(t,T) = L_t \mathbb{Q}(\tau > T | \mathcal{F}_t) = L_t m_t$

with $m_t = \mathbb{Q}(\tau > T | \mathcal{F}_t) = \mathbb{E}(e^{-\Lambda_T} | \mathcal{F}_t).$ The price of a defaultable call with payoff $\mathbb{1}_{T < \tau}(Y_T - K)^+$ is

$$C_t = \mathbb{E}_{\mathbb{Q}}(\mathbbm{1}_{T < \tau}(Y_T - K)^+ | \mathcal{G}_t) = \mathbbm{1}_{t < \tau} e^{\Lambda_t} \mathbb{E}_{\mathbb{Q}}(e^{-\Lambda_T}(Y_T - K)^+ | \mathcal{F}_t)$$

= $L_t m_t^Y$

with $m_t^Y = \mathbb{E}_{\mathbb{Q}}(e^{-\Lambda_T}(Y_T - K)^+ | \mathcal{F}_t)$, hence

$$\frac{dC_t}{dC_t} = L_t dm_t^Y - m_t^Y L_{t-} dM_t = \frac{C_{t-}}{D(t,T)} dD(t,T) - L_t \frac{m_t^Y}{m_t} dm_t + L_t dm_t^Y$$

An hedging strategy consists of holding $\frac{C_{t-}}{D(t,T)}$ DZCs.

Credit Default Swap under (H) Hypothesis

Valuation of a Credit Default Swap

A CDS issued at time s, with maturity T, and recovery δ at default is a defaultable claim $(0, A, Z, \tau)$ where

$$dA_t = -\kappa 1\!\!1_{]0,T]}(t) dt, \quad Z_t = \delta_t 1\!\!1_{[0,T]}(t).$$

A credit default swap (CDS) is a contract between two counterparties. B agrees to pay a default payment Z to A if a default of the obligor C occurs. If there is no default until the maturity of the default swap, B pays nothing. A pays a fee for the default protection. The fee can be either a fee paid till the maturity or till the default event. A can not cancelled the contract. He can at any time before the default transfer the contract to D: D will pay the fee and receive the default payment if any. As we shall see, it can happen that D will require an amount of cash to accept to receive the contract. Usually, the fee consists of C_i paid at time T_i (this is the fixed leg). However, here we shall consider a continuous payment. The default payment is called the default leg. A stylized credit default swap is formally introduced through the following definition.

A credit default swap with a constant spread κ and recovery at default δ is a contract:

the buyer of protection pays a premium κdt in the time interval [t, t + dt] up to $T \wedge \tau$ The seller pays a recovery $\delta(\tau)$ at time τ , in the case $\tau < T$.

Ex-dividend Price of a CDS

We now assume that **(H) hypothesis holds** between \mathbb{F} and \mathbb{G} , that is \mathbb{F} -martingales are \mathbb{G} -martingales. Then, F is increasing. We assume that F is absolutely continuous w.r.t. Lebesgue measure. Then the process

$$M_t = H_t - \int_0^{t \wedge \tau} \lambda_u \, du,$$

with $\lambda_t dt = \frac{dF_t}{G_t}$ is a \mathbb{G} -martingale.

The ex-dividend price of a credit default swap, with a rate process κ and a protection payment δ_{τ} at default, equals, for every $t \in [0, T]$

$$S_{t}(\kappa) = \mathbb{E}_{\mathbb{Q}}\left(\delta(\tau)\mathbb{1}_{\{t < \tau \leq T\}} - \mathbb{1}_{\{t < \tau\}}\kappa((\tau \wedge T) - t) \middle| \mathcal{G}_{t}\right)$$
$$= \mathbb{1}_{\{t < \tau\}}\frac{B_{t}}{G_{t}}\mathbb{E}\left(\int_{t}^{T}B_{u}^{-1}G_{u}(\delta_{u}\lambda_{u} - \kappa)du \middle| \mathcal{F}_{t}\right)$$

and thus the cumulative price of a CDS equals, for any $t \in [0, T]$,

$$S_t^{\operatorname{cum}}(\kappa) = \mathbbm{1}_{\{t < \tau\}} \frac{B_t}{G_t} \mathbb{E}\Big(\int_t^T B_u^{-1} G_u(\delta_u \lambda_u - \kappa) \, du \, \Big| \, \mathcal{F}_t\Big) + B_t \int_{]0,t]} B_u^{-1} \, dD_u.$$

The dividend process $D(\kappa, \delta, T, \tau)$ of a CDS equals

$$D_t = \int_{]0,t\wedge T]} \delta_u \, dH_u - \kappa \int_{]0,t\wedge T]} (1 - H_u) \, du = \delta_\tau 1\!\!1_{\{\tau \le t\}} - \kappa (t \wedge T \wedge \tau).$$

$$B_t = \exp(\int_0^t r_s ds)$$

Trading Strategies with a CDS

A strategy $\phi_t = (\phi_t^0, \phi_t^1), t \in [0, T]$ is **self-financing** if the wealth process $U(\phi)$, defined as

$$U_t(\phi) = \phi_t^0 + \phi_t^1 S_t(\kappa),$$

satisfies

$$dU_t(\phi) = \phi_t^1 \, dS_t(\kappa) + \phi_t^1 \, dD_t,$$

where $S(\kappa)$ is the ex-dividend price of a CDS with the dividend stream D. A strategy ϕ replicates a contingent claim Y if $U_T(\phi) = Y$.

We assume that \mathbb{F} is the trivial filtration. Our aim is to find a replicating strategy for the defaultable claim $(X, 0, Z, \tau)$, where X is a constant and $Z_t = z(t)$. Let

 $Y = 1\!\!1_{\{T \ge \tau\}} z(\tau) + 1\!\!1_{\{T < \tau\}} X$

We assume that \mathbb{F} is the trivial filtration. Our aim is to find a replicating strategy for the defaultable claim $(X, 0, Z, \tau)$, where X is a constant and $Z_t = z(t)$. Let

$$Y = 1_{\{T \ge \tau\}} z(\tau) + 1_{\{T < \tau\}} X$$

Let \widetilde{y} and ϕ^1 be defined as

$$\widetilde{y}(t) = \frac{1}{G(t)} \left(XG(T) - \int_t^T z(s) dG(s) \right)$$
$$\phi^1(t) = \frac{z(t) - \widetilde{y}(t)}{\delta(t) - \widetilde{S}_t(\kappa)},$$

We assume that \mathbb{F} is the trivial filtration. Our aim is to find a replicating strategy for the defaultable claim $(X, 0, Z, \tau)$, where X is a constant and $Z_t = z(t)$. Let

$$Y = 1_{\{T \ge \tau\}} z(\tau) + 1_{\{T < \tau\}} X$$

Let \widetilde{y} and ϕ^1 be defined as

$$\widetilde{y}(t) = \frac{1}{G(t)} \left(XG(T) - \int_t^T z(s) dG(s) \right)$$
$$\phi^1(t) = \frac{z(t) - \widetilde{y}(t)}{\delta(t) - \widetilde{S}_t(\kappa)},$$

Let $\phi_t^0 = V_t(\phi) - \phi^1(t)S_t(\kappa)$, where $V_t(\phi) = \mathbb{E}_{\mathbb{Q}}(Y|\mathcal{H}_t)$

We assume that \mathbb{F} is the trivial filtration. Our aim is to find a replicating strategy for the defaultable claim $(X, 0, Z, \tau)$, where X is a constant and $Z_t = z(t)$. Let

$$Y = 1_{\{T \ge \tau\}} z(\tau) + 1_{\{T < \tau\}} X$$

Let \widetilde{y} and ϕ^1 be defined as

$$\widetilde{y}(t) = \frac{1}{G(t)} \left(XG(T) - \int_t^T z(s) dG(s) \right)$$
$$\phi^1(t) = \frac{z(t) - \widetilde{y}(t)}{\delta(t) - \widetilde{S}_t(\kappa)},$$

Let $\phi_t^0 = V_t(\phi) - \phi^1(t)S_t(\kappa)$, where $V_t(\phi) = \mathbb{E}_{\mathbb{Q}}(Y|\mathcal{H}_t)$. Then the self-financing strategy $\phi = (\phi^0, \phi^1)$ based on the savings account and the CDS is a replicating strategy.

$$Y = z(\tau) 1\!\!1_{\{\tau < T\}} + X 1\!\!1_{\{T < \tau\}}$$

$$Y = z(\tau) 1\!\!1_{\{\tau < T\}} + X 1\!\!1_{\{T < \tau\}}$$

On the one hand

$$\mathbb{E}(Y|\mathcal{H}_t) = Y_t = z(\tau) \mathbb{1}_{\{\tau \le t\}} + \mathbb{1}_{\{t < \tau\}} \frac{1}{G(t)} \left(XG(T) - \int_t^T z(s) dG(s) \right)$$
$$= \int_0^t z(s) dH_s + (1 - H_t) \frac{1}{G(t)} \left(XG(T) - \int_t^T z(s) dG(s) \right)$$

$$Y = z(\tau) 1\!\!1_{\{\tau < T\}} + X 1\!\!1_{\{T < \tau\}}$$

On the one hand

$$\mathbb{E}(Y|\mathcal{H}_t) = Y_t = z(\tau) \mathbb{1}_{\{\tau \le t\}} + \mathbb{1}_{\{\tau < t\}} \frac{1}{G(t)} \left(XG(T) - \int_t^T z(s) dG(s) \right)$$
$$= \int_0^t z(s) dH_s + (1 - H_t) \frac{1}{G(t)} \left(XG(T) - \int_t^T z(s) dG(s) \right)$$

hence $dY_t = (z(t) - \widetilde{y}(t)) dM_t$ with $\widetilde{y}(t) = \frac{1}{G(t)} (XG(T) - \int_t^T z(s) dG(s)).$

$$Y = z(\tau) 1\!\!1_{\{\tau < T\}} + X 1\!\!1_{\{T < \tau\}}$$

On the one hand

$$E(Y|\mathcal{H}_t) = Y_t = z(\tau) \mathbb{1}_{\{\tau \le t\}} + \mathbb{1}_{\{t < \tau\}} \frac{1}{G(t)} \left(XG(T) + \int_0^t z(s) dG(s) \right)$$

= $\int_0^t z(s) dH_s + (1 - H_t) \frac{1}{G(t)} \left(XG(T) + \int_0^t z(s) dG(s) \right)$
ce $dY_t = (z(t) - \tilde{u}(t)) dM_t$ with $\tilde{u}(t) = \frac{1}{G(t)} (XG(T) - \int_t^T z(s) dG(s)).$

hence $dY_t = (z(t) - \tilde{y}(t)) dM_t$ with $\tilde{y}(t) = \frac{1}{G(t)} (XG(T) - \int_t^T z(s) dG(s))$. On the other hand,

 $dY_t = \phi_t^1 \left(dS_t(\kappa) - \kappa (1 - H_t) dt + \delta(t) dH_t \right) = \phi_t^1 \left(\delta(t) - S_{t-}(\kappa) \right) dM_t.$

Hedging of credit derivatives

- Two default free assets, one defaultable asset
 Two default free assets, one total default asset
 Two default free assets, one defaultable with recovery
- 2. Two defaultable assets

Two default-free assets, one defaultable asset

We present a particular case where there are two default-free assets

• the savings account Y^1 with constant interest rate r

Two default-free assets, one defaultable asset

We present a particular case where there are two default-free assets

- \bullet the savings account Y^1 with constant interest rate r
- An asset with dynamics

 $dY_t^2 = Y_t^2(\mu_{2,t}dt + \sigma_{2,t}dW_t)$

where the coefficients μ_2, σ_2 are \mathbb{F} -adapted processes

Two default-free assets, one defaultable asset

We present a particular case where there are two default-free assets

- \bullet the savings account Y^1 with constant interest rate r
- An asset with dynamics

 $dY_t^2 = Y_t^2(\mu_{2,t}dt + \sigma_{2,t}dW_t)$

where the coefficients μ_2, σ_2 are \mathbb{F} -adapted processes

• a defaultable asset

 $dY_t^3 = Y_{t-}^3(\mu_{3,t}dt + \sigma_{3,t}dW_t + \kappa_{3,t}dM_t),$

where the coefficients $\mu_3, \sigma_3, \kappa_3$ are G-adapted processes with $\kappa_3 \geq -1$.

Here, M is the compensated martingale of the default process

$$M_t = H_t - \int_0^t (1 - H_s) \lambda_s ds$$

W is an \mathbb{F} and a \mathbb{G} -Brownian motion, where \mathbb{F} is the natural filtration of W and $\mathbb{G} = \mathbb{H} \vee \mathbb{F}$, λ is an \mathbb{F} adapted process.

Our aim is to hedge defaultable claims. As we shall establish, the case of **total default** for the third asset (i.e. $\kappa_{3,t} \equiv -1$) is really different from the others.

Two default-free assets, a total default asset

We assume that

$$dY_t^3 = Y_{t-}^3(\mu_{3,t}dt + \sigma_{3,t}dW_t - dM_t).$$

$$Y_t^3 = \widetilde{Y}_t^3 \mathbb{1}_{t < \tau} \,.$$

Arbitrage condition, completeness of the market

Our aim is to determine the $emm(s) \mathbb{Q}$ for the model

$$dY_t^1 = Y_t^1 r dt$$

$$dY_t^2 = Y_t^2 (\mu_2 dt + \sigma_2 dW_t)$$

$$dY_t^3 = Y_{t-}^3 (\mu_3 dt + \sigma_3 dW_t - dM_t)$$

when Y^1 is the numéraire. The probability $\mathbb Q$ such that $Y^{i,1}=Y^i/Y^1$ are martingales is

$$d\mathbb{Q}|_{\mathcal{G}_t} = L_t d\mathbb{P}|_{\mathcal{G}_t} ,$$

where

$$dL_t = L_{t-}(\theta_t dW_t + \zeta_t dM_t)$$

with

$$\theta = \frac{r - \mu}{\sigma_2}$$

$$\zeta \lambda = \mu_3 - r + \sigma_3 \frac{r - \mu}{\sigma_2},$$

as soon as $\zeta > -1$.

Under \mathbb{Q}

$$W_t^* = W_t - \int_0^t \theta_s ds$$
$$M_t^* = M_t - \int_0^t (1 - H_s) \lambda_s \zeta_s ds$$

are martingales.

Under \mathbb{Q} , the process

$$H_t - \int_0^t (1 - H_s) \lambda_s^* ds$$

is a martingale where

$$\lambda_t^* = \lambda_t (1 + \zeta_t)$$

Here, our aim is to hedge survival claims $(X, 0, \tau)$, i.e. contingent claims of the form $X \mathbb{1}_{T < \tau}$ where $X \in \mathcal{F}_T$.

Here, our aim is to hedge survival claims $(X, 0, \tau)$, i.e. contingent claims of the form $X \mathbb{1}_{T < \tau}$ where $X \in \mathcal{F}_T$.

The price of the contingent claim is

$$C_t = e^{-r(T-t)} \mathbb{E}_{\mathbb{Q}}(X 1\!\!1_{T < \tau} | \mathcal{G}_t)$$

Here, our aim is to hedge survival claims $(X, 0, \tau)$, i.e. contingent claims of the form $X 1_{T < \tau}$ where $X \in \mathcal{F}_T$.

The price of the contingent claim is

$$C_t = e^{-r(T-t)} \mathbb{E}_{\mathbb{Q}}(X 1\!\!1_{T < \tau} | \mathcal{G}_t)$$

The hedging strategy consists of a triple of predictable processes ϕ^1, ϕ^1, ϕ^3 such that

$$\phi_t^3 Y_t^3 = C_t, \forall t < \tau, \quad \phi_t^1 e^{rt} + \phi_t^2 Y_t^2 = 0$$

and which satisfies the self financing condition

$$dC_{t} = \phi_{t}^{1} r e^{rt} dt + \phi_{t}^{2} dY_{t}^{2} + \phi_{t}^{3} dY_{t}^{3}$$

Indeed, under \mathbb{Q} , for r = 0, one has

$$dC_t = \alpha_t dW_t^* - C_{t-} dM_t^*$$

and,

$$\phi_t^2 dY_t^2 + \phi_t^3 dY_t^3 = \phi_t^2 \sigma_2 Y_t^2 dW_t^* - C_{t-} dM_t^*$$

hence the existence of ϕ^2 , and ϕ^1 such that $\phi_t^1 e^{rt} + \phi_t^2 Y_t^2 = 0$

$$dY^{1} = Y^{1}rdt, \ dY^{2} = Y^{2}(\mu_{2}dt + \sigma_{2}dW), dY^{3} = Y^{3}(\mu_{3}dt + \sigma_{3}dW - dM)$$
 51

PDE Approach

We are working in a model with constant (or Markovian) coefficients

$$dY_t = Y_t r dt$$

$$dY_t^2 = Y_t^2 (\mu_2 dt + \sigma_2 dW_t)$$

$$dY_t^3 = Y_{t-}^3 (\mu_3 dt + \sigma_3 dW_t - dM_t).$$

PDE Approach

We are working in a model with constant (or Markovian) coefficients

$$dY_t = Y_t r dt$$

$$dY_t^2 = Y_t^2 (\mu_2 dt + \sigma_2 dW_t)$$

$$dY_t^3 = Y_{t-}^3 (\mu_3 dt + \sigma_3 dW_t - dM_t)$$

Let $C(t, Y_t^2, Y_t^3, H_t)$ be the price of the contingent claim $G(Y_T^2, Y_T^3, H_T)$ and λ^* be the risk-neutral intensity of default.

Then,

$$\partial_t C(t, y_2, y_3; 0) + ry_2 \partial_2 C(t, y_2, y_3; 0) + r^* y_3 \partial_3 C(t, y_2, y_3; 0) - r^* C(t, y_2, y_3; 0) + \frac{1}{2} \sum_{i,j=2}^3 \sigma_i \sigma_j y_i y_j \partial_{ij} C(t, y_2, y_3; 0) + \lambda^* C(t, y_2, 0; 1) = 0$$

where $r^* = r + \lambda^*$

Then,

$$\partial_t C(t, y_2, y_3; 0) + ry_2 \partial_2 C(t, y_2, y_3; 0) + r^* y_3 \partial_3 C(t, y_2, y_3; 0) - r^* C(t, y_2, y_3; 0) + \frac{1}{2} \sum_{i,j=2}^3 \sigma_i \sigma_j y_i y_j \partial_{ij} C(t, y_2, y_3; 0) + \lambda^* C(t, y_2, 0; 1) = 0$$

where $r^* = r + \lambda^*$ and

$$\partial_t C(t, y_2; 1) + ry_2 \partial_2 C(t, y_2; 1) + \frac{1}{2} \sigma_2^2 y_2^2 \partial_{22} C(t, y_2; 1) - rC(t, y_2; 1) = 0$$

Then,

$$\partial_t C(t, y_2, y_3; 0) + ry_2 \partial_2 C(t, y_2, y_3; 0) + r^* y_3 \partial_3 C(t, y_2, y_3; 0) - r^* C(t, y_2, y_3; 0) + \frac{1}{2} \sum_{i,j=2}^3 \sigma_i \sigma_j y_i y_j \partial_{ij} C(t, y_2, y_3; 0) + \lambda^* C(t, y_2, 0; 1) = 0$$

where $r^* = r + \lambda^*$ and

$$\partial_t C(t, y_2; 1) + ry_2 \partial_2 C(t, y_2; 1) + \frac{1}{2} \sigma_2^2 y_2^2 \partial_{22} C(t, y_2; 1) - rC(t, y_2; 1) = 0$$

with the terminal conditions

$$C(T, y_2, y_3; 0) = G(y_2, y_3; 0), \quad C(T, y_2; 1) = G(y_2, 0; 1).$$

$$\begin{split} \phi_t^3 Y_{t-}^3 &= -\Delta C(t) = -C(t, Y_t^2, 0; 1) + C(t, Y_t^2, Y_{t-}^3; 0) \\ \sigma_2 \phi_t^2 Y_t^2 &= -\Delta C(t) + \sum_{i=2}^3 Y_{t-}^i \sigma_i \partial_i C(t) \\ \phi_t^1 Y_t^1 &= C(t) - \phi_t^2 Y_t^2 - \phi_t^3 Y_t^3 \,. \end{split}$$

$$\begin{split} \phi_t^3 Y_{t-}^3 &= -\Delta C(t) = -C(t, Y_t^2, 0; 1) + C(t, Y_t^2, Y_{t-}^3; 0) \\ \sigma_2 \phi_t^2 Y_t^2 &= -\Delta C(t) + \sum_{i=2}^3 Y_{t-}^i \sigma_i \partial_i C(t) \\ \phi_t^1 Y_t^1 &= C(t) - \phi_t^2 Y_t^2 - \phi_t^3 Y_t^3 \,. \end{split}$$

Note that, in the case of survival claim, $C(t, Y_t^2, 0; 1) = 0$ and $\phi_t^3 Y_{t-}^3 = C(t, Y_{t-}^2, Y_{t-}^3; 0)$ for every $t \in [0, T]$.

$$\begin{split} \phi_t^3 Y_{t-}^3 &= -\Delta C(t) = -C(t, Y_t^2, 0; 1) + C(t, Y_t^2, Y_{t-}^3; 0) \\ \sigma_2 \phi_t^2 Y_t^2 &= -\Delta C(t) + \sum_{i=2}^3 Y_{t-}^i \sigma_i \partial_i C(t) \\ \phi_t^1 Y_t^1 &= C(t) - \phi_t^2 Y_t^2 - \phi_t^3 Y_t^3 \,. \end{split}$$

Note that, in the case of survival claim, $C(t, Y_t^2, 0; 1) = 0$ and $\phi_t^3 Y_{t-}^3 = C(t, Y_{t-}^2, Y_{t-}^3; 0)$ for every $t \in [0, T]$. Hence, the following relationships holds, for every $t < \tau$,

$$\phi_t^3 Y_t^3 = C(t, Y_t^2, Y_t^3; 0), \quad \phi_t^1 Y_t^1 + \phi_t^2 Y_t^2 = 0.$$

$$\begin{split} \phi_t^3 Y_{t-}^3 &= -\Delta C(t) = -C(t, Y_t^2, 0; 1) + C(t, Y_t^2, Y_{t-}^3; 0) \\ \sigma_2 \phi_t^2 Y_t^2 &= -\Delta C(t) + \sum_{i=2}^3 Y_{t-}^i \sigma_i \partial_i C(t) \\ \phi_t^1 Y_t^1 &= C(t) - \phi_t^2 Y_t^2 - \phi_t^3 Y_t^3 \,. \end{split}$$

Note that, in the case of survival claim, $C(t, Y_t^2, 0; 1) = 0$ and $\phi_t^3 Y_{t-}^3 = C(t, Y_{t-}^2, Y_{t-}^3; 0)$ for every $t \in [0, T]$. Hence, the following relationships holds, for every $t < \tau$,

$$\phi_t^3 Y_t^3 = C(t, Y_t^2, Y_t^3; 0), \quad \phi_t^1 Y_t^1 + \phi_t^2 Y_t^2 = 0.$$

The last equality is a special case of the **balance condition**. It ensures that the wealth of a replicating portfolio falls to 0 at default time.

$$dY^{1} = Y^{1}rdt, \ dY^{2} = Y^{2}(\mu_{2}dt + \sigma_{2}dW), dY^{3} = Y^{3}(\mu_{3}dt + \sigma_{3}dW - dM)$$
 60

Example 1

Consider a survival claim $Y = \mathbb{1}_{\{T < \tau\}} g(Y_T^2)$. Its pre-default pricing function $C(t, y_2, y_3; 0) = C^g(t, y_2)$ where C^g solves

$$\partial_t C^g(t,y;0) + ry \partial_2 C^g(t,y;0) + \frac{1}{2} \sigma_2^2 y^2 \partial_{22} C^g(t,y;0) - r^* C^g(t,y;0) = 0$$

$$C^g(T,y;0) = g(y)$$

The solution is

$$C^{g}(t,y) = e^{(r^{*}-r)(t-T)} C^{r,g,2}(t,y) = e^{\lambda^{*}(t-T)} C^{r,g,2}(t,y),$$

where $C^{r,g,2}$ is the price of an option with payoff $g(Y_T)$ in a BS model with interest rate r and volatility σ_2 .

$$dY^{1} = Y^{1}rdt, \ dY^{2} = Y^{2}(\mu_{2}dt + \sigma_{2}dW), dY^{3} = Y^{3}(\mu_{3}dt + \sigma_{3}dW - dM)$$
 61

Example 2

Consider a survival claim of the form

$$Y = G(Y_T^2, Y_T^3, H_T) = \mathbb{1}_{\{T < \tau\}} g(Y_T^3).$$

Then the post-default pricing function $C^{g}(\cdot; 1)$ vanishes identically, and the pre-default pricing function $C^{g}(\cdot; 0)$ is

$$C^{g}(t, y_{2}, y_{3}; 0) = C^{r^{*}, g, 3}(t, y_{3})$$

where $C^{\alpha,g,3}(t,y)$ is the price of the contingent claim $g(Y_T)$ in the Black-Scholes framework with the interest rate α and the volatility parameter equal to σ_3 .

$$dY^{1} = Y^{1}rdt, \ dY^{2} = Y^{2}(\mu_{2}dt + \sigma_{2}dW), dY^{3} = Y^{3}(\mu_{3}dt + \sigma_{3}dW - dM)$$
 62

Two default-free assets, one defaultable asset with Recovery, PDE approach

Let the price processes Y^1, Y^2, Y^3 satisfy

$$dY_t^1 = rY_t^1 dt$$

$$dY_t^2 = Y_t^2(\mu_2 dt + \sigma_2 dW_t)$$

$$dY_t^3 = Y_{t-}^3(\mu_3 dt + \sigma_3 dW_t + \kappa_3 dM_t)$$

with $\sigma_2 \neq 0$ and where the coefficients are constant. Assume that the relationship $\sigma_2(r-\mu_3) = \sigma_3(r-\mu_2)$ holds and $\kappa_3 \neq 0, \kappa_3 > -1$.

Two default-free assets, one defaultable asset with Recovery, PDE approach

Let the price processes Y^1, Y^2, Y^3 satisfy

$$dY_t^1 = rY_t^1 dt$$

$$dY_t^2 = Y_t^2(\mu_2 dt + \sigma_2 dW_t)$$

$$dY_t^3 = Y_{t-}^3(\mu_3 dt + \sigma_3 dW_t + \kappa_3 dM_t)$$

with $\sigma_2 \neq 0$ and where the coefficients are constant. Assume that the relationship $\sigma_2(r-\mu_3) = \sigma_3(r-\mu_2)$ holds and $\kappa_3 \neq 0, \kappa_3 > -1$. Then the price of a contingent claim $Y = G(Y_T^2, Y_T^3, H_T)$ can be represented as $\pi_t(Y) = C(t, Y_t^2, Y_t^3; H_t)$, where the pricing functions $C(\cdot; 0)$ and $C(\cdot; 1)$ satisfy the following PDEs

$\partial_t C(t, y_2, y_3; 1) + ry_2 \partial_2 C(t, y_2, y_3; 1) + ry_3 \partial_3 C(t, y_2, y_3; 1) - rC(t, y_2, y_3; 1)$ $+ \frac{1}{2} \sum_{i,j=2}^3 \sigma_i \sigma_j y_i y_j \partial_{ij} C(t, y_2, y_3; 1) = 0$

$$\partial_t C(t, y_2, y_3; 1) + ry_2 \partial_2 C(t, y_2, y_3; 1) + ry_3 \partial_3 C(t, y_2, y_3; 1) - rC(t, y_2, y_3; 1) + \frac{1}{2} \sum_{i,j=2}^3 \sigma_i \sigma_j y_i y_j \partial_{ij} C(t, y_2, y_3; 1) = 0$$

and

$$\partial_t C(t, y_2, y_3; 0) + ry_2 \partial_2 C(t, y_2, y_3; 0) + y_3 (r - \kappa_3 \lambda) \partial_3 C(t, y_2, y_3; 0)$$

- $rC(t, y_2, y_3; 0) + \frac{1}{2} \sum_{i,j=2}^3 \sigma_i \sigma_j y_i y_j \partial_{ij} C(t, y_2, y_3; 0)$
+ $\lambda (C(t, y_2, y_3(1 + \kappa_3); 1) - C(t, y_2, y_3; 0)) = 0$

$$\partial_t C(t, y_2, y_3; 1) + ry_2 \partial_2 C(t, y_2, y_3; 1) + ry_3 \partial_3 C(t, y_2, y_3; 1) - rC(t, y_2, y_3; 1) + \frac{1}{2} \sum_{i,j=2}^3 \sigma_i \sigma_j y_i y_j \partial_{ij} C(t, y_2, y_3; 1) = 0$$

and

$$\partial_t C(t, y_2, y_3; 0) + ry_2 \partial_2 C(t, y_2, y_3; 0) + y_3 (r - \kappa_3 \lambda) \partial_3 C(t, y_2, y_3; 0)$$

- $rC(t, y_2, y_3; 0) + \frac{1}{2} \sum_{i,j=2}^3 \sigma_i \sigma_j y_i y_j \partial_{ij} C(t, y_2, y_3; 0)$
+ $\lambda (C(t, y_2, y_3(1 + \kappa_3); 1) - C(t, y_2, y_3; 0)) = 0$

subject to the terminal conditions

$$C(T, y_2, y_3; 0) = G(y_2, y_3, 0), \quad C(T, y_2, y_3; 1) = G(y_2, y_3, 1).$$

The replicating strategy equals $\phi = (\phi^1, \phi^2, \phi^3)$

$$\begin{split} \phi_t^2 &= \frac{1}{\sigma_2 \kappa_3 Y_t^2} \left(\kappa_3 \sum_{i=2}^3 \sigma_i y_i \partial_i C(t, Y_t^2, Y_{t-}^3, H_{t-}) \right. \\ &- \sigma_3 \left(C(t, Y_t^2, Y_{t-}^3(1+\kappa_3); 1) - C(t, Y_t^2, Y_{t-}^3; 0)) \right), \\ \phi_t^3 &= \frac{1}{\kappa_3 Y_{t-}^3} \left(C(t, Y_t^2, Y_{t-}^3(1+\kappa_3); 1) - C(t, Y_t^2, Y_{t-}^3; 0) \right), \end{split}$$

and where ϕ_t^1 is given by $\phi_t^1 Y_t^1 + \phi_t^2 Y_t^2 + \phi_t^3 Y_t^3 = C_t$.

Example Consider a survival claim of the form

 $Y = G(Y_T^2, Y_T^3, H_T) = \mathbb{1}_{\{T < \tau\}} g(Y_T^3).$

Then the post-default pricing function $C^{g}(\cdot; 1)$ vanishes identically, and the pre-default pricing function $C^{g}(\cdot; 0)$ solves

$$\partial_t C^g(\cdot;0) + ry_2 \partial_2 C^g(\cdot;0) + y_3 \left(r - \kappa_3 \lambda\right) \partial_3 C^g(\cdot;0)$$

+
$$\frac{1}{2} \sum_{i,j=2}^3 \sigma_i \sigma_j y_i y_j \partial_{ij} C^g(\cdot;0) - (r + \lambda) C^g(\cdot;0) = 0$$

$$C^g(T, y_2, y_3;0) = g(y_3)$$

Denote $\alpha = r - \kappa_3 \lambda$ and $\beta = \lambda(1 + \kappa_3)$.

Then, $C^{g}(t, y_{2}, y_{3}; 0) = e^{\beta(T-t)}C^{\alpha, g, 3}(t, y_{3})$ where $C^{\alpha, g, 3}(t, y)$ is the price of the contingent claim $g(Y_{T})$ in the Black-Scholes framework with the interest rate α and the volatility parameter equal to σ_{3} .

Let C_t be the current value of the contingent claim Y, so that

$$C_t = \mathbb{1}_{\{t < \tau\}} e^{\beta(T-t)} C^{\alpha,g,3}(t,y_3).$$

The hedging strategy of the survival claim is, on the event $\{t < \tau\}$,

$$\phi_t^3 Y_t^3 = -\frac{1}{\kappa_3} e^{-\beta(T-t)} C^{\alpha,g,3}(t,Y_t^3) = -\frac{1}{\kappa_3} C_t,$$

$$\phi_t^2 Y_t^2 = \frac{\sigma_3}{\sigma_2} \left(Y_t^3 e^{-\beta(T-t)} \partial_y C^{\alpha,g,3}(t,Y_t^3) - \phi_t^3 Y_t^3 \right).$$

Hedging of a Recovery Payoff

The price C^g of the payoff $G(Y_T^2, Y_T^3, H_T) = \mathbbm{1}_{\{T \ge \tau\}} g(Y_T^2)$ solves

$$\partial_t C^g(\cdot;1) + ry \partial_y C^g(\cdot;1) + \frac{1}{2} \sigma_2^2 y^2 \partial_{yy} C^g(\cdot;1) - r C^g(\cdot;1) = 0$$
$$C^g(T,y;1) = g(y)$$

hence $C^{g}(t, y_{2}, y_{3}, 1) = C^{r,g,2}(t, y_{2})$ is the price of $g(Y_{T}^{2})$ in the model Y^{1}, Y^{2} . Prior to default, the price of the claim solves

$$\partial_t C^g(\cdot; 0) + ry_2 \partial_2 C^g(\cdot; 0) + y_3 (r - \kappa_3 \lambda) \partial_3 C^g(\cdot; 0) + \frac{1}{2} \sum_{i,j=2}^3 \sigma_i \sigma_j y_i y_j \partial_{ij} C^g(\cdot; 0) - (r + \lambda) C^g(\cdot; 0) = -\lambda C^g(t, y_2; 1) C^g(T, y_2, y_3; 0) = 0$$

Hence $C^{g}(t, y_2, y_3; 0) = (1 - e^{\lambda(t-T)})C^{r,g,2}(t, y_2).$

Two defaultable assets with total default

Assume that Y^1 and Y^2 are defaultable tradeable assets with zero recovery and a common default time τ .

$$dY_t^i = Y_{t-}^i (\mu_i dt + \sigma_i dW_t - dM_t), i = 1, 2$$

Then

$$Y_t^1 = 1\!\!1_{\{\tau > t\}} \widetilde{Y}_t^1, \quad Y_t^2 = 1\!\!1_{\{\tau > t\}} \widetilde{Y}_t^2$$

with

$$d\widetilde{Y}_t^i = \widetilde{Y}_t^i((\mu_i + \lambda_t)dt + \sigma_i dW_t), i = 1, 2$$

$$dY_t^i = Y_{t-}^i(\mu_i dt + \sigma_i dW_t - dM_t), i = 1, 2$$

The wealth process V associated with the self-financing trading strategy (ϕ^1, ϕ^2) satisfies for $t \in [0, T]$

$$V_{t} = Y_{t}^{1} \left(V_{0}^{1} + \int_{0}^{t} \phi_{u}^{2} \, d\widetilde{Y}_{u}^{2,1} \right)$$

where $\widetilde{Y}_t^{2,1} = \widetilde{Y}_t^2 / \widetilde{Y}_t^1$.

Obviously, this market is **incomplete**, **however**, **some contingent claims are hedgeable**, as we present now.

Hedging Survival claim: martingale approach

A strategy (ϕ^1, ϕ^2) replicates a survival claim $C = X \mathbb{1}_{\{\tau > T\}}$ whenever we have

$$\widetilde{Y}_T^1 \Big(\widetilde{V}_0^1 + \int_0^T \phi_t^2 \, d\widetilde{Y}_t^{2,1} \Big) = X$$

for some constant \widetilde{V}_0^1 and some **F**-predictable process ϕ^2 . It follows that if $\sigma_1 \neq \sigma_2$, **any survival claim** $C = X \mathbb{1}_{\{\tau > T\}}$ **is attainable.** Let $\widetilde{\mathbb{Q}}$ be a probability measure such that $\widetilde{Y}_t^{2,1}$ is an **F**-martingale under $\widetilde{\mathbb{Q}}$. Then the pre-default value $\widetilde{U}_t(C)$ at time t of $(X, 0, \tau)$ equals

$$\widetilde{U}_t(C) = \widetilde{Y}_t^1 \mathbb{E}_{\widetilde{\mathbb{Q}}} \left(X(\widetilde{Y}_T^1)^{-1} \,|\, \mathcal{F}_t \right).$$

 $dY_t^i = Y_{t-}^i(\mu_i dt + \sigma_i dW_t - dM_t), i = 1, 2$

Example: Call option on a defaultable asset We assume that $Y_t^1 = D(t, T)$ represents a defaultable ZC-bond with zero recovery, and $Y_t^2 = \mathbb{1}_{\{t < \tau\}} \tilde{Y}_t^2$ is a generic defaultable asset with total default. The payoff of a call option written on the defaultable asset Y^2 equals

$$C_T = (Y_T^2 - K)^+ = \mathbb{1}_{\{T < \tau\}} (\widetilde{Y}_T^2 - K)^+$$

The replication of the option reduces to finding a constant x and an \mathbb{F} -predictable process ϕ^2 that satisfy

$$x + \int_0^T \phi_t^2 \, d\widetilde{Y}_t^{2,1} = (\widetilde{Y}_T^2 - K)^+.$$

Assume that the volatility $\sigma_{1,t} - \sigma_{2,t}$ of $\widetilde{Y}^{2,1}$ is deterministic. Let $\widetilde{F}_2(t,T) = \widetilde{Y}_t^2(\widetilde{D}(t,T))^{-1}$

$$dY_t^i = Y_{t-}^i(\mu_i dt + \sigma_i dW_t - dM_t), i = 1, 2$$

The credit-risk-adjusted forward price of the option written on Y^2 equals

$$\widetilde{C}_t = \widetilde{Y}_t^2 \mathcal{N}\big(d_+(\widetilde{F}_2(t,T),t,T)\big) - K\widetilde{D}(t,T)\mathcal{N}\big(d_-(\widetilde{F}_2(t,T),t,T)\big),$$

where

$$d_{\pm}(\widetilde{f},t,T) = \frac{\ln \widetilde{f} - \ln K \pm \frac{1}{2}v^2(t,T)}{v(t,T)}$$

and

$$v^{2}(t,T) = \int_{t}^{T} (\sigma_{1,u} - \sigma_{2,u})^{2} du.$$

Moreover the replicating strategy ϕ in the spot market satisfies for every $t \in [0, T]$, on the set $\{t < \tau\}$,

$$\phi_t^1 = -K\mathcal{N}\big(d_-(\widetilde{F}_2(t,T),t,T)\big), \quad \phi_t^2 = \mathcal{N}\big(d_+(\widetilde{F}_2(t,T),t,T)\big).$$

$$dY_t^i = Y_{t-}^i(\mu_i dt + \sigma_i dW_t - dM_t), i = 1, 2$$

Hedging Survival claim: PDE approach

Assume that $\sigma_1 \neq \sigma_2$. Then the pre-default pricing function v satisfies the PDE

$$\partial_t C + y_1 \left(\mu_1 + \lambda - \sigma_1 \frac{\mu_2 - \mu_1}{\sigma_2 - \sigma_1} \right) \partial_1 C + y_2 \left(\mu_2 + \lambda - \sigma_2 \frac{\mu_2 - \mu_1}{\sigma_2 - \sigma_1} \right) \partial_2 C + \frac{1}{2} \left(y_1^2 \sigma_1^2 \partial_{11} C + y_2^2 \sigma_2^2 \partial_{22} C + 2y_1 y_2 \sigma_1 \sigma_2 \partial_{12} C \right) = \left(\mu_1 + \lambda - \sigma_1 \frac{\mu_2 - \mu_1}{\sigma_2 - \sigma_1} \right) C$$

with the terminal condition $C(T, y_1, y_2) = G(y_1, y_2)$.

$$dY_t^i = Y_{t-}^i(\mu_i dt + \sigma_i dW_t - dM_t), i = 1, 2$$

Hedging defaultable claims with CDSs

Our aim is to hedge

$$Y = 1\!\!1_{\{T \ge \tau\}} Z_{\tau} + 1\!\!1_{\{T < \tau\}} X.$$

using two CDS with maturities T_i , rates κ_i and protection payment δ^i . We assume r = 0. Let ζ_t^i defined as

$$m_t^i = \mathbb{E}_{\mathbb{Q}}\left(\int_0^T \delta_u^i G_u \lambda_u \, du - \kappa_i \int_0^T G_u \, du \, \Big| \, \mathcal{F}_t\right) \,, \, dm_t^i = \zeta_t^i dW_t$$

and

$$m_t^Z = \mathbb{E}_{\mathbb{Q}}(-\int_0^\infty Z_u dG_u + G_T X | \mathcal{F}_t), \ dm_t^Z = \zeta_t^Z dW_t$$

Assume that there exist \mathbb{F} -predictable processes ϕ^1, ϕ^2 such that

$$\sum_{i=1}^{2} \phi_t^i \left(\delta_t^i - \widetilde{S}_t^i(\kappa_i) \right) = Z_t - \widetilde{y}_t, \quad \sum_{i=1}^{2} \phi_t^i \zeta_t^i = \zeta_t,$$

where \tilde{y} is given by

$$\widetilde{y}_t = \frac{1}{G_t} \mathbb{E}_{\mathbb{Q}} \left(-\int_t^T Z_u \, dG_u + G_T X \, \Big| \, \mathcal{F}_t \right).$$

Let $\phi_t^0 = V_t(\phi) - \sum_{i=1}^2 \phi_t^i S_t^i(\kappa_i)$, where the process $V(\phi)$ is given by

$$dV_t(\phi) = \sum_{i=1}^2 \phi_t^i \left(dS_t^i(\kappa_i) + dD_t^i \right)$$

with the initial condition $V_0(\phi) = \mathbb{E}_{\mathbb{Q}}(Y)$. Then the self-financing trading strategy $\phi = (\phi^0, \phi^1, \phi^2)$ is admissible and is a replicating strategy for a defaultable claim $(X, 0, Z, \tau)$.

Valuation of Credit Default Swaptions

A forward CDS issued at time s, with starting date U, maturity T, and recovery δ at default is a defaultable claim $(0, A, Z, \tau)$ where

$$dA_t = -\kappa \mathbb{1}_{]U,T]}(t) dt, \quad Z_t = \delta_t \mathbb{1}_{[U,T]}(t).$$

- The CDS rate κ is \mathcal{F}_s -measurable.
- The \mathbb{F} -adapted process $\delta : [U, T] \to \mathbb{R}$ represents the default protection.

The value of the forward CDS equals, for every $t \in [s, U]$,

$$S_t(\kappa) = B_t \mathbb{E}_{\mathbb{Q}} \Big(\mathbb{1}_{\{U < \tau \le T\}} B_{\tau}^{-1} \delta_{\tau} \, \Big| \, \mathcal{G}_t \Big) - \kappa \, B_t \mathbb{E}_{\mathbb{Q}} \Big(\int_{]t \wedge U, \tau \wedge T]} B_u^{-1} \, du \, \Big| \, \mathcal{G}_t \Big).$$

Valuation of a Forward CDS

The value of a credit default swap started at s, equals, for every $t \in [s, U]$,

$$S_t(\kappa) = \mathbb{1}_{\{t < \tau\}} \frac{B_t}{G_t} \mathbb{E}_{\mathbb{Q}} \left(-\int_U^T B_u^{-1} \delta_u \, dG_u - \kappa \int_{]U,T]} B_u^{-1} G_u \, du \, \Big| \, \mathcal{F}_t \right).$$

Note that $S_t(\kappa) = \mathbb{1}_{\{t < \tau\}} \widetilde{S}_t(\kappa)$ where the \mathbb{F} -adapted process $\widetilde{S}(\kappa)$ is the pre-default value. Moreover

$$\widetilde{S}_t(\kappa) = \widetilde{P}(t, U, T) - \kappa \,\widetilde{A}(t, U, T)$$

where

- $\widetilde{P}(t, U, T)$ is the pre-default value of the protection leg,
- $\widetilde{A}(t, U, T)$ is the pre-default value of the fee leg per one unit of κ .

Credit Default Swaption

A credit default swaption is a call option with expiry date $R \leq U$ and zero strike written on the value of the forward CDS issued at time $0 \leq s < R$, with start date U, maturity T, and an \mathcal{F}_s -measurable rate κ .

The swaption's payoff C_R at expiry equals $C_R = (S_R(\kappa))^+$.

For a forward CDS with an \mathcal{F}_s -measurable rate κ we have, for every $t \in [s, U]$,

$$S_t(\kappa) = \mathbb{1}_{\{t < \tau\}} \widetilde{A}(t, U, T)(\kappa(t, U, T) - \kappa).$$

It is clear that

$$C_R = \mathbb{1}_{\{R < \tau\}} \widetilde{A}(R, U, T) (\kappa(R, U, T) - \kappa)^+.$$

A credit default swaption is formally equivalent to a call option on the forward CDS rate with strike κ . This option is knocked out if default occurs prior to R.

The price at time $t \in [s, R]$ of a credit default swaption equals

$$C_t = \mathbb{1}_{\{t < \tau\}} \frac{B_t}{G_t} \mathbb{E}_{\mathbb{Q}} \left(\frac{G_R}{B_R} \widetilde{A}(R, U, T) (\kappa(R, U, T) - \kappa)^+ \, \Big| \, \mathcal{F}_t \right).$$

Define an equivalent probability measure $\widehat{\mathbb{Q}}$ on (Ω, \mathcal{F}_R) by setting

$$\frac{d\widehat{\mathbb{Q}}}{d\mathbb{Q}} = \frac{M_R^A}{M_0^A}, \quad \mathbb{Q}\text{-a.s.}$$

where the (\mathbb{Q}, \mathbb{F}) -martingale M^A is given by

$$M_t^A = \mathbb{E}_{\mathbb{Q}} \Big(\int_{]U,T]} B_u^{-1} G_u \, du \, \Big| \, \mathcal{F}_t \Big).$$

The price of the credit default swaption equals, for every $t \in [s, R]$,

$$C_t = \mathbb{1}_{\{t < \tau\}} \widetilde{A}(t, U, T) \mathbb{E}_{\widehat{\mathbb{Q}}} \left((\kappa(R, U, T) - \kappa)^+ \, \big| \, \mathcal{F}_t \right) = \mathbb{1}_{\{t < \tau\}} \widetilde{C}_t.$$

The forward CDS rate $(\kappa(t, U, T), t \leq R)$ is a $(\widehat{\mathbb{Q}}, \mathbb{F})$ -martingale.

Brownian Case

- Let the filtration \mathbb{F} be generated by a Brownian motion W under \mathbb{Q}^* .
- Since $M^P t = -\mathbb{E}_{\mathbb{Q}}\left(\int_U^T B_u^{-1} \delta_u \, dG_u \, \Big| \, \mathcal{F}_t\right)$ and M^A are strictly positive (\mathbb{Q}, \mathbb{F}) -martingales, we have that

$$dM_t^P = M_t^P \sigma_t^P \, dW_t, \quad dM_t^A = M_t^A \sigma_t^A \, dW_t,$$

for some \mathbb{F} -adapted processes σ^P and σ^A .

The forward CDS rate $(\kappa(t, U, T), t \in [0, R])$ is $(\widehat{\mathbb{Q}}, \mathbb{F})$ -martingale and

$$d\kappa(t, U, T) = \kappa(t, U, T)\sigma_t^{\kappa} \, d\widehat{W}_t$$

where $\sigma^{\kappa} = \sigma^{P} - \sigma^{A}$ and the $(\widehat{\mathbb{Q}}, \mathbb{F})$ -Brownian motion \widehat{W} equals

$$\widehat{W}_t = W_t - \int_0^t \sigma_u^A \, du, \quad \forall t \in [0, R].$$

Assume that the volatility $\sigma^{\kappa} = \sigma^{P} - \sigma^{A}$ of the forward CDS spread is deterministic. Then the pre-default value of the credit default swaption with strike level κ and expiry date R equals, for every $t \in [0, U]$,

$$\widetilde{C}_t = \widetilde{A}_t \Big(\kappa_t N \big(d_+(\kappa_t, U - t) \big) - \kappa N \big(d_-(\kappa_t, U - t) \big) \Big)$$

where $\kappa_t = \kappa(t, U, T)$ and $\widetilde{A}_t = \widetilde{A}(t, U, T)$. Equivalently,

$$\widetilde{C}_t = \widetilde{P}_t N(d_+(\kappa_t, t, R)) - \kappa \widetilde{A}_t N(d_-(\kappa_t, t, R))$$

where $\widetilde{P}_t = \widetilde{P}(t, U, T)$ and

$$d_{\pm}(\kappa_t, t, R) = \frac{\log(\kappa_t/\kappa) \pm \frac{1}{2} \int_t^R (\sigma^{\kappa}(u))^2 du}{\sqrt{\int_t^R (\sigma^{\kappa}(u))^2 du}}$$