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Lectures on Credit Risk

1. Models for single default

2. Contagion models

3. Credit derivatives
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Some remarks

Some remarks
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Some remarks

Assume that there exists a traded asset with price S, an F-adapted process, and
that the market is arbitrage free, using G adapted strategies. Assume furthermore
than the interest rate if F adapted. Then there exists a probability measure Q,
equivalent to P such that Se

∫ t
0 rsds is a G martingale, hence an F martingale. If the

market where S is traded is complete, immersion property holds true under Q and

Q(τ > t|Ft) = Q(τ > t|F∞)

If the market where S is traded is incomplete, immersion property holds true under
some Q.
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Some remarks

If we are dealing only with defaultable asset, one can work in a general setting

In that case, a quite general assumption is the existence of a density under P, i.e.,

P(τ > θ|Ft) =
∫ ∞

θ

gt(u)ν(du)

where ν has no atoms.

Then,

• Immersion property is equivalent to gt(u) = gu(u) for t > u

• Gt = mt −
∫ t

0
ps(s)ν(ds) where m is an F-martingale

• Ht −
∫ t

0
ps(s)
Gs

ν(ds) is a G martingale

• Y is a G martingale (Yt = yt11t<τ + yt(τ)11τ≤t) if and only if
for any u, the processes yt(u), t ≥ u) are F martingales
E(Yt|Ft) = ytGt +

∫∞
t

yt(s)gt(s)ν(ds) is an F martingale
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Some remarks

• If W is a F-Brownian motion, then

Wt = W̃t +
∫ t∧τ

0

d〈x,G〉s
Gs−

+
∫ t

t∧τ

d〈x, g.(τ)〉s
gs−(τ)

,

where W is a G-Brownian motion.
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Credit derivatives

Credit derivatives

1. Dynamics of corporate bonds

2. CDS

3. Hedging

4. Swaptions
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Credit derivatives

A generic defaultable claim (X,A, Z, τ) consists of:

1. A promised contingent claim X representing the payoff received by the holder
of the claim at time T, if no default has occurred prior to or at maturity date T .

2. A process A representing the dividends stream prior to default.

3. A recovery process Z representing the recovery payoff at time of default, if
default occurs prior to or at maturity date T .

4. A random time τ representing the default time.
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Dynamics of corporate bonds in a Cox Model

Dynamics of corporate bonds in a Cox Model
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Dynamics of corporate bonds in a Cox Model

Let B(t, T ) be the price at time t of a default-free bond paying 1 at maturity T

satisfies

B(t, T ) = EQ
(

exp
(−

∫ T

t

rs ds
) ∣∣∣Ft

)

where Q is the risk-neutral probability.
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Dynamics of corporate bonds in a Cox Model

Let B(t, T ) be the price at time t of a default-free bond paying 1 at maturity T

satisfies

B(t, T ) = EQ
(

exp
(−

∫ T

t

rs ds
) ∣∣∣Ft

)

where Q is the risk-neutral probability.

The market price D(t, T ) of a defaultable zero-coupon bond with maturity T is

D(t, T ) = EQ
(
11{T<τ} exp

(−
∫ T

t

rs ds
) ∣∣∣Gt

)

= 11{τ>t}EQ
(

exp
(−

∫ T

t

[rs + λQs ] ds
) ∣∣∣Ft

)
.
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Dynamics of corporate bonds in a Cox Model

Promised payoff:

Let X ∈ FT

EQ

(
X11T<τ exp−

∫ T

t

rsds|Gt

)
= 11t<τEQ

(
X exp−

∫ T

t

(rs + λs)ds|Ft

)

λ(= λQ) is also called the spread.
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Dynamics of corporate bonds in a Cox Model

Recovery paid at Maturity

We consider a contract which pays Zτ at date T , if τ ≤ T where Z is an F-adapted
process and no payment in the case τ > T . We also assume that the interest rate is
null. The price at time t of this contract is

St = EQ(Zτ11τ≤T |Gt)

=
∫ t

0

ZudHu + Lt

(
−

∫ t

0

Zue−Λuλudu + mZ
t

)

where mZ
t = EQ(

∫ T

0
Zue−Λuλudu|Ft) is an F (hence a G) martingale and

Lt = 11t<τeΛt .
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Dynamics of corporate bonds in a Cox Model

Recovery paid at Maturity

We consider a contract which pays Zτ at date T , if τ ≤ T where Z is an F-adapted
process and no payment in the case τ > T . We also assume that the interest rate is
null. The price at time t of this contract is

St = EQ(Zτ11τ≤T |Gt)

=
∫ t

0

ZudHu + Lt

(
−

∫ t

0

Zue−Λuλudu + mZ
t

)

where mZ
t = EQ(

∫ T

0
Zue−Λuλudu|Ft) is an F (hence a G) martingale and

Lt = 11t<τeΛt .
We assume here that F-martingales are continuous. From dLt = −Lt−dMt and
integration by parts formula we deduce that

dSt = (Zt − St−) dMt + LtdmZ
t

dMt = dHt − (1−Ht)λtdt 14



Dynamics of corporate bonds in a Cox Model

Recovery paid at Default

If the payment Z is done at time τ

St = 11t<τEQ(Zτ11t<τ<T |Gt) = Lt

(
−

∫ t

0

Zue−Λuλudu + mZ
t

)

where mZ
t = EQ(

∫ T

0
Zue−Λuλudu|Ft).
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Dynamics of corporate bonds in a Cox Model

Recovery paid at Default

If the payment Z is done at time τ

St = 11t<τEQ(Zτ11t<τ<T |Gt) = Lt

(
−

∫ t

0

Zue−Λuλudu + mZ
t

)

where mZ
t = EQ(

∫ T

0
Zue−Λuλudu|Ft). Then,

dSt = −Ztλt(1−Ht)dt− St−dMt + LtdmZ
t

= (Zt − St−)dMt + LtdmZ
t − ZtdHt .

The process St +
∫ t

0
Zs(1−Hs)λsds is a G martingale, as well as St + ZτHt.
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Dynamics of corporate bonds in a Cox Model

Price and Hedging a defaultable call

The savings account Y 0
t = 1, a risky asset with risk-neutral dynamics

dYt = YtσdWt and a DZC of maturity T with price D(t, T ) are traded. The
reference filtration is that of a Brownian motion W .
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Dynamics of corporate bonds in a Cox Model

Price and Hedging a defaultable call

The savings account Y 0
t = 1, a risky asset with risk-neutral dynamics

dYt = YtσdWt and a DZC of maturity T with price D(t, T ) are traded. The
reference filtration is that of a Brownian motion W . One has

D(t, T ) = LtQ(τ > T |Ft) = Ltmt

with mt = Q(τ > T |Ft) = EQ(e−ΛT |Ft).
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Dynamics of corporate bonds in a Cox Model

Price and Hedging a defaultable call

The savings account Y 0
t = 1, a risky asset with risk-neutral dynamics

dYt = YtσdWt and a DZC of maturity T with price D(t, T ) are traded. The
reference filtration is that of the Brownian motion W . One has

D(t, T ) = LtQ(τ > T |Ft) = Ltmt

with mt = Q(τ > T |Ft) = EQ(e−ΛT |Ft).
The price of a defaultable call with payoff 11T<τ (YT −K)+ is

Ct = EQ(11T<τ (YT −K)+|Gt) = 11t<τeΛtEQ(e−ΛT (YT −K)+|Ft)
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Dynamics of corporate bonds in a Cox Model

Price and Hedging a defaultable call

The savings account Y 0
t = 1, a risky asset with risk-neutral dynamics

dYt = YtσdWt and a DZC of maturity T with price D(t, T ) are traded. The
reference filtration is that of the Brownian motion W . One has

D(t, T ) = LtQ(τ > T |Ft) = Ltmt

with mt = Q(τ > T |Ft) = EQ(e−ΛT |Ft).
The price of a defaultable call with payoff 11T<τ (YT −K)+ is

Ct = EQ(11T<τ (YT −K)+|Gt) = 11t<τeΛtEQ(e−ΛT (YT −K)+|Ft)

= Ltm
Y
t

with mY
t = EQ(e−ΛT (YT −K)+|Ft).
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Dynamics of corporate bonds in a Cox Model

Price and Hedging a defaultable call

The savings account Y 0
t = 1, a risky asset with risk-neutral dynamics

dYt = YtσdWt and a DZC of maturity T with price D(t, T ) are traded. The
reference filtration is that of the Brownian motion W . One has

D(t, T ) = LtQ(τ > T |Ft) = Ltmt

with mt = Q(τ > T |Ft) = E(e−ΛT |Ft).
The price of a defaultable call with payoff 11T<τ (YT −K)+ is

Ct = EQ(11T<τ (YT −K)+|Gt) = 11t<τeΛtEQ(e−ΛT (YT −K)+|Ft)

= Ltm
Y
t

with mY
t = EQ(e−ΛT (YT −K)+|Ft), hence

dCt = LtdmY
t −mY

t Lt−dMt =
Ct−

D(t, T )
dD(t, T )− Lt

mY
t

mt
dmt + LtdmY

t

An hedging strategy consists of holding Ct−
D(t,T ) DZCs.
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Credit Default Swap under (H) Hypothesis

Credit Default Swap under (H) Hypothesis
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Credit Default Swap under (H) Hypothesis

Valuation of a Credit Default Swap

A CDS issued at time s, with maturity T , and recovery δ at default is a defaultable
claim (0, A, Z, τ) where

dAt = −κ11]0,T ](t) dt, Zt = δt11[0,T ](t).

A credit default swap (CDS) is a contract between two counterparties. B agrees to
pay a default payment Z to A if a default of the obligor C occurs. If there is no
default until the maturity of the default swap, B pays nothing. A pays a fee for the
default protection. The fee can be either a fee paid till the maturity or till the
default event.
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Credit Default Swap under (H) Hypothesis

A can not cancelled the contract. He can at any time before the default transfer
the contract to D: D will pay the fee and receive the default payment if any. As we
shall see, it can happen that D will require an amount of cash to accept to receive
the contract. Usually, the fee consists of Ci paid at time Ti (this is the fixed leg).
However, here we shall consider a continuous payment. The default payment is
called the default leg.

24



Credit Default Swap under (H) Hypothesis

A stylized credit default swap is formally introduced through the following
definition.

A credit default swap with a constant spread κ and recovery at default δ

is a contract:

the buyer of protection pays a premium κdt in the time interval [t, t+dt] up to T ∧ τ

The seller pays a recovery δ(τ) at time τ , in the case τ < T .

25



Credit Default Swap under (H) Hypothesis

Ex-dividend Price of a CDS

We now assume that (H) hypothesis holds between F and G, that is
F-martingales are G-martingales. Then, F is increasing. We assume that F is
absolutely continuous w.r.t. Lebesgue measure. Then the process

Mt = Ht −
∫ t∧τ

0

λu du,

with λtdt = dFt

Gt
is a G-martingale.

Gt = Q(τ > t|Ft) = 1− Ft 26



Credit Default Swap under (H) Hypothesis

The ex-dividend price of a credit default swap, with a rate process κ and a
protection payment δτ at default, equals, for every t ∈ [0, T ]

St(κ) = EQ
(
δ(τ)11{t<τ≤T} − 11{t<τ}κ

(
(τ ∧ T )− t

) ∣∣∣Gt

)

= 11{t<τ}
Bt

Gt
E

( ∫ T

t

B−1
u Gu(δuλu − κ) du

∣∣∣Ft

)

and thus the cumulative price of a CDS equals, for any t ∈ [0, T ],

Scum
t (κ) = 11{t<τ}

Bt

Gt
E

( ∫ T

t

B−1
u Gu(δuλu − κ) du

∣∣∣Ft

)
+ Bt

∫

]0,t]

B−1
u dDu.

The dividend process D(κ, δ, T, τ) of a CDS equals

Dt =
∫

]0,t∧T ]

δu dHu − κ

∫

]0,t∧T ]

(1−Hu) du = δτ11{τ≤t} − κ(t ∧ T ∧ τ).

Bt = exp(
∫ t
0 rsds) 27



Credit Default Swap under (H) Hypothesis

Trading Strategies with a CDS

A strategy φt = (φ0
t , φ

1
t ), t ∈ [0, T ] is self-financing if the wealth process U(φ),

defined as
Ut(φ) = φ0

t + φ1
t St(κ),

satisfies
dUt(φ) = φ1

t dSt(κ) + φ1
t dDt,

where S(κ) is the ex-dividend price of a CDS with the dividend stream D. A
strategy φ replicates a contingent claim Y if UT (φ) = Y .
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Credit Default Swap under (H) Hypothesis

Hedging of a Contingent Claim in the CDS Market

We assume that F is the trivial filtration. Our aim is to find a replicating
strategy for the defaultable claim (X, 0, Z, τ), where X is a constant and
Zt = z(t). Let

Y = 11{T≥τ}z(τ) + 11{T<τ}X
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Credit Default Swap under (H) Hypothesis

Hedging of a Contingent Claim in the CDS Market

We assume that F is the trivial filtration. Our aim is to find a replicating
strategy for the defaultable claim (X, 0, Z, τ), where X is a constant and
Zt = z(t). Let

Y = 11{T≥τ}z(τ) + 11{T<τ}X

Let ỹ and φ1 be defined as

ỹ(t) =
1

G(t)

(
XG(T )−

∫ T

t

z(s)dG(s)

)

φ1(t) =
z(t)− ỹ(t)

δ(t)− S̃t(κ)
,

30



Credit Default Swap under (H) Hypothesis

Hedging of a Contingent Claim in the CDS Market

We assume that F is the trivial filtration. Our aim is to find a replicating
strategy for the defaultable claim (X, 0, Z, τ), where X is a constant and
Zt = z(t). Let

Y = 11{T≥τ}z(τ) + 11{T<τ}X

Let ỹ and φ1 be defined as

ỹ(t) =
1

G(t)

(
XG(T )−

∫ T

t

z(s)dG(s)

)

φ1(t) =
z(t)− ỹ(t)

δ(t)− S̃t(κ)
,

Let φ0
t = Vt(φ)− φ1(t)St(κ), where Vt(φ) = EQ(Y |Ht)
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Credit Default Swap under (H) Hypothesis

Hedging of a Contingent Claim in the CDS Market

We assume that F is the trivial filtration. Our aim is to find a replicating
strategy for the defaultable claim (X, 0, Z, τ), where X is a constant and
Zt = z(t). Let

Y = 11{T≥τ}z(τ) + 11{T<τ}X

Let ỹ and φ1 be defined as

ỹ(t) =
1

G(t)

(
XG(T )−

∫ T

t

z(s)dG(s)

)

φ1(t) =
z(t)− ỹ(t)

δ(t)− S̃t(κ)
,

Let φ0
t = Vt(φ)− φ1(t)St(κ), where Vt(φ) = EQ(Y |Ht). Then the self-financing

strategy φ = (φ0, φ1) based on the savings account and the CDS is a replicating
strategy.
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Credit Default Swap under (H) Hypothesis

Proof: The terminal value of the wealth is

Y = z(τ)11{τ<T} + X11{T<τ}
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Credit Default Swap under (H) Hypothesis

Proof: The terminal value of the wealth is

Y = z(τ)11{τ<T} + X11{T<τ}

On the one hand

E(Y |Ht) = Yt = z(τ)11{τ≤t} + 11{t<τ}
1

G(t)

(
XG(T )−

∫ T

t

z(s)dG(s)

)

=
∫ t

0

z(s)dHs + (1−Ht)
1

G(t)

(
XG(T )−

∫ T

t

z(s)dG(s)

)

34



Credit Default Swap under (H) Hypothesis

Proof: The terminal value of the wealth is

Y = z(τ)11{τ<T} + X11{T<τ}

On the one hand

E(Y |Ht) = Yt = z(τ)11{τ≤t} + 11{τ<t}
1

G(t)

(
XG(T )−

∫ T

t

z(s)dG(s)

)

=
∫ t

0

z(s)dHs + (1−Ht)
1

G(t)

(
XG(T )−

∫ T

t

z(s)dG(s)

)

hence dYt = (z(t)− ỹ(t)) dMt with ỹ(t) = 1
G(t) (XG(T )− ∫ T

t
z(s)dG(s)).
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Credit Default Swap under (H) Hypothesis

Proof: The terminal value of the wealth is

Y = z(τ)11{τ<T} + X11{T<τ}

On the one hand

E(Y |Ht) = Yt = z(τ)11{τ≤t} + 11{t<τ}
1

G(t)

(
XG(T ) +

∫ t

0

z(s)dG(s)
)

=
∫ t

0

z(s)dHs + (1−Ht)
1

G(t)

(
XG(T ) +

∫ t

0

z(s)dG(s)
)

hence dYt = (z(t)− ỹ(t)) dMt with ỹ(t) = 1
G(t) (XG(T )− ∫ T

t
z(s)dG(s)).

On the other hand,
dYt = φ1

t (dSt(κ)− κ(1−Ht)dt + δ(t)dHt) = φ1
t (δ(t)− St−(κ)) dMt.
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Hedging of credit derivatives

Hedging of credit derivatives
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Hedging of credit derivatives

1. Two default free assets, one defaultable asset

1.1 Two default free assets, one total default asset

1.2 Two default free assets, one defaultable with recovery

2. Two defaultable assets

38



Two default-free assets, one defaultable asset

Two default-free assets, one defaultable asset

We present a particular case where there are two default-free assets
• the savings account Y 1 with constant interest rate r
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Two default-free assets, one defaultable asset

Two default-free assets, one defaultable asset

We present a particular case where there are two default-free assets
• the savings account Y 1 with constant interest rate r

• An asset with dynamics

dY 2
t = Y 2

t (µ2,tdt + σ2,tdWt)

where the coefficients µ2, σ2 are F-adapted processes
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Two default-free assets, one defaultable asset

Two default-free assets, one defaultable asset

We present a particular case where there are two default-free assets
• the savings account Y 1 with constant interest rate r

• An asset with dynamics

dY 2
t = Y 2

t (µ2,tdt + σ2,tdWt)

where the coefficients µ2, σ2 are F-adapted processes
• a defaultable asset

dY 3
t = Y 3

t−(µ3,tdt + σ3,tdWt + κ3,tdMt) ,

where the coefficients µ3, σ3, κ3 are G-adapted processes with κ3 ≥ −1.
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Two default-free assets, one defaultable asset

Here, M is the compensated martingale of the default process

Mt = Ht −
∫ t

0

(1−Hs)λsds

W is an F and a G-Brownian motion, where F is the natural filtration of W and
G = H ∨ F, λ is an F adapted process.

42



Two default-free assets, one defaultable asset

Our aim is to hedge defaultable claims. As we shall establish, the case of total
default for the third asset (i.e. κ3,t ≡ −1) is really different from the others.
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Two default-free assets, a total default asset

Two default-free assets, a total default asset

We assume that
dY 3

t = Y 3
t−(µ3,tdt + σ3,tdWt − dMt) .

Y 3
t = Ỹ 3

t 11t<τ .

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 44



Two default-free assets, a total default asset

Arbitrage condition, completeness of the market

Our aim is to determine the emm(s) Q for the model

dY 1
t = Y 1

t rdt

dY 2
t = Y 2

t (µ2dt + σ2dWt)

dY 3
t = Y 3

t−(µ3dt + σ3dWt − dMt) .

when Y 1 is the numéraire. The probability Q such that Y i,1 = Y i/Y 1 are
martingales is

dQ|Gt = LtdP|Gt ,

where
dLt = Lt−(θtdWt + ζtdMt)

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 45



Two default-free assets, a total default asset

with

θ =
r − µ

σ2

ζλ = µ3 − r + σ3
r − µ

σ2
,

as soon as ζ > −1.

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 46



Two default-free assets, a total default asset

Under Q

W ∗
t = Wt −

∫ t

0

θsds

M∗
t = Mt −

∫ t

0

(1−Hs)λsζsds

are martingales.

Under Q, the process

Ht −
∫ t

0

(1−Hs)λ∗sds

is a martingale where
λ∗t = λt(1 + ζt)

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 47



Two default-free assets, a total default asset

Here, our aim is to hedge survival claims (X, 0, τ), i.e. contingent claims of the
form X11T<τ where X ∈ FT .

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 48



Two default-free assets, a total default asset

Here, our aim is to hedge survival claims (X, 0, τ), i.e. contingent claims of the
form X11T<τ where X ∈ FT .

The price of the contingent claim is

Ct = e−r(T−t)EQ(X11T<τ |Gt)

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 49



Two default-free assets, a total default asset

Here, our aim is to hedge survival claims (X, 0, τ), i.e. contingent claims of the
form X11T<τ where X ∈ FT .

The price of the contingent claim is

Ct = e−r(T−t)EQ(X11T<τ |Gt)

The hedging strategy consists of a triple of predictable processes φ1, φ1, φ3 such that

φ3
t Y

3
t = Ct, ∀t < τ, φ1

t e
rt + φ2

t Y
2
t = 0

and which satisfies the self financing condition

dCt = φ1
t re

rtdt + φ2
t dY 2

t + φ3
t dY 3

t

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 50



Two default-free assets, a total default asset

Indeed, under Q, for r = 0, one has

dCt = αtdW ∗
t − Ct−dM∗

t

and,

φ2
t dY 2

t + φ3
t dY 3

t = φ2
t σ2Y

2
t dW ∗

t − Ct−dM∗
t

hence the existence of φ2, and φ1 such that φ1
t e

rt + φ2
t Y

2
t = 0

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 51



PDE Approach

PDE Approach

We are working in a model with constant (or Markovian) coefficients

dYt = Ytrdt

dY 2
t = Y 2

t (µ2dt + σ2dWt)

dY 3
t = Y 3

t−(µ3dt + σ3dWt − dMt) .

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 52



PDE Approach

PDE Approach

We are working in a model with constant (or Markovian) coefficients

dYt = Ytrdt

dY 2
t = Y 2

t (µ2dt + σ2dWt)

dY 3
t = Y 3

t−(µ3dt + σ3dWt − dMt) .

Let C(t, Y 2
t , Y 3

t ,Ht) be the price of the contingent claim G(Y 2
T , Y 3

T , HT ) and λ∗ be
the risk-neutral intensity of default.

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 53



PDE Approach

Then,

∂tC(t, y2, y3; 0) + ry2∂2C(t, y2, y3; 0) + r∗y3∂3C(t, y2, y3; 0)− r∗C(t, y2, y3; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijC(t, y2, y3; 0) + λ∗C(t, y2, 0; 1) = 0

where r∗ = r + λ∗

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 54



PDE Approach

Then,

∂tC(t, y2, y3; 0) + ry2∂2C(t, y2, y3; 0) + r∗y3∂3C(t, y2, y3; 0)− r∗C(t, y2, y3; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijC(t, y2, y3; 0) + λ∗C(t, y2, 0; 1) = 0

where r∗ = r + λ∗ and

∂tC(t, y2; 1) + ry2∂2C(t, y2; 1) +
1
2
σ2

2y2
2∂22C(t, y2; 1)− rC(t, y2; 1) = 0

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 55



PDE Approach

Then,

∂tC(t, y2, y3; 0) + ry2∂2C(t, y2, y3; 0) + r∗y3∂3C(t, y2, y3; 0)− r∗C(t, y2, y3; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijC(t, y2, y3; 0) + λ∗C(t, y2, 0; 1) = 0

where r∗ = r + λ∗ and

∂tC(t, y2; 1) + ry2∂2C(t, y2; 1) +
1
2
σ2

2y2
2∂22C(t, y2; 1)− rC(t, y2; 1) = 0

with the terminal conditions

C(T, y2, y3; 0) = G(y2, y3; 0), C(T, y2; 1) = G(y2, 0; 1).

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 56



PDE Approach

The replicating strategy φ for Y is given by formulae

φ3
t Y

3
t− = −∆C(t) = −C(t, Y 2

t , 0; 1) + C(t, Y 2
t , Y 3

t−; 0)

σ2φ
2
t Y

2
t = −∆C(t) +

3∑

i=2

Y i
t−σi∂iC(t)

φ1
t Y

1
t = C(t)− φ2

t Y
2
t − φ3

t Y
3
t .

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 57



PDE Approach

The replicating strategy φ for Y is given by formulae

φ3
t Y

3
t− = −∆C(t) = −C(t, Y 2

t , 0; 1) + C(t, Y 2
t , Y 3

t−; 0)

σ2φ
2
t Y

2
t = −∆C(t) +

3∑

i=2

Y i
t−σi∂iC(t)

φ1
t Y

1
t = C(t)− φ2

t Y
2
t − φ3

t Y
3
t .

Note that, in the case of survival claim, C(t, Y 2
t , 0; 1) = 0 and

φ3
t Y

3
t− = C(t, Y 2

t−, Y 3
t−; 0) for every t ∈ [0, T ].

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 58



PDE Approach

The replicating strategy φ for Y is given by formulae

φ3
t Y

3
t− = −∆C(t) = −C(t, Y 2

t , 0; 1) + C(t, Y 2
t , Y 3

t−; 0)

σ2φ
2
t Y

2
t = −∆C(t) +

3∑

i=2

Y i
t−σi∂iC(t)

φ1
t Y

1
t = C(t)− φ2

t Y
2
t − φ3

t Y
3
t .

Note that, in the case of survival claim, C(t, Y 2
t , 0; 1) = 0 and

φ3
t Y

3
t− = C(t, Y 2

t−, Y 3
t−; 0) for every t ∈ [0, T ]. Hence, the following relationships

holds, for every t < τ ,

φ3
t Y

3
t = C(t, Y 2

t , Y 3
t ; 0), φ1

t Y
1
t + φ2

t Y
2
t = 0.

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 59



PDE Approach

The replicating strategy φ for Y is given by formulae

φ3
t Y

3
t− = −∆C(t) = −C(t, Y 2

t , 0; 1) + C(t, Y 2
t , Y 3

t−; 0)

σ2φ
2
t Y

2
t = −∆C(t) +

3∑

i=2

Y i
t−σi∂iC(t)

φ1
t Y

1
t = C(t)− φ2

t Y
2
t − φ3

t Y
3
t .

Note that, in the case of survival claim, C(t, Y 2
t , 0; 1) = 0 and

φ3
t Y

3
t− = C(t, Y 2

t−, Y 3
t−; 0) for every t ∈ [0, T ]. Hence, the following relationships

holds, for every t < τ ,

φ3
t Y

3
t = C(t, Y 2

t , Y 3
t ; 0), φ1

t Y
1
t + φ2

t Y
2
t = 0.

The last equality is a special case of the balance condition. It ensures that the
wealth of a replicating portfolio falls to 0 at default time.

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 60



PDE Approach

Example 1

Consider a survival claim Y = 11{T<τ}g(Y 2
T ). Its pre-default pricing function

C(t, y2, y3 ; 0) = Cg(t, y2) where Cg solves

∂tC
g(t, y; 0) + ry∂2C

g(t, y; 0) +
1
2
σ2

2y2∂22C
g(t, y; 0)− r∗Cg(t, y; 0) = 0

Cg(T, y; 0) = g(y)

The solution is

Cg(t, y) = e(r∗−r)(t−T ) Cr,g,2(t, y) = eλ∗(t−T ) C r,g,2(t, y),

where C r,g,2 is the price of an option with payoff g(YT ) in a BS model with interest
rate r and volatility σ2.

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 61



PDE Approach

Example 2

Consider a survival claim of the form

Y = G(Y 2
T , Y 3

T , HT ) = 11{T<τ}g(Y 3
T ).

Then the post-default pricing function Cg(· ; 1) vanishes identically, and the
pre-default pricing function Cg(· ; 0) is

Cg(t, y2, y3; 0) = Cr∗,g,3(t, y3)

where Cα,g,3(t, y) is the price of the contingent claim g(YT ) in the Black-Scholes
framework with the interest rate α and the volatility parameter equal to σ3.

dY 1 = Y 1rdt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW − dM) 62



Two default-free assets, one defaultable asset with Recovery, PDE approach

Two default-free assets, one defaultable asset with Recovery,
PDE approach

Let the price processes Y 1, Y 2, Y 3 satisfy

dY 1
t = rY 1

t dt

dY 2
t = Y 2

t (µ2dt + σ2dWt)

dY 3
t = Y 3

t−(µ3dt + σ3dWt + κ3dMt)

with σ2 6= 0 and where the coefficients are constant. Assume that the relationship
σ2(r − µ3) = σ3(r − µ2) holds and κ3 6= 0, κ3 > −1.

dY 1 = rY 1dt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW + κ3dM) 63



Two default-free assets, one defaultable asset with Recovery, PDE approach

Two default-free assets, one defaultable asset with Recovery,
PDE approach

Let the price processes Y 1, Y 2, Y 3 satisfy

dY 1
t = rY 1

t dt

dY 2
t = Y 2

t (µ2dt + σ2dWt)

dY 3
t = Y 3

t−(µ3dt + σ3dWt + κ3dMt)

with σ2 6= 0 and where the coefficients are constant. Assume that the relationship
σ2(r − µ3) = σ3(r − µ2) holds and κ3 6= 0, κ3 > −1. Then the price of a contingent
claim Y = G(Y 2

T , Y 3
T ,HT ) can be represented as πt(Y ) = C(t, Y 2

t , Y 3
t ; Ht), where the

pricing functions C(· ; 0) and C(· ; 1) satisfy the following PDEs

dY 1 = rY 1dt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW + κ3dM) 64



Two default-free assets, one defaultable asset with Recovery, PDE approach

∂tC(t, y2, y3; 1) + ry2∂2C(t, y2, y3; 1) + ry3∂3C(t, y2, y3; 1)− rC(t, y2, y3; 1)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijC(t, y2, y3; 1) = 0

dY 1 = rY 1dt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW + κ3dM) 65



Two default-free assets, one defaultable asset with Recovery, PDE approach

∂tC(t, y2, y3; 1) + ry2∂2C(t, y2, y3; 1) + ry3∂3C(t, y2, y3; 1)− rC(t, y2, y3; 1)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijC(t, y2, y3; 1) = 0

and

∂tC(t, y2, y3; 0) + ry2∂2C(t, y2, y3; 0) + y3 (r − κ3λ) ∂3C(t, y2, y3; 0)

− rC(t, y2, y3; 0) +
1
2

3∑

i,j=2

σiσjyiyj∂ijC(t, y2, y3; 0)

+λ
(
C(t, y2, y3(1 + κ3); 1)− C(t, y2, y3; 0)

)
= 0

dY 1 = rY 1dt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW + κ3dM) 66



Two default-free assets, one defaultable asset with Recovery, PDE approach

∂tC(t, y2, y3; 1) + ry2∂2C(t, y2, y3; 1) + ry3∂3C(t, y2, y3; 1)− rC(t, y2, y3; 1)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijC(t, y2, y3; 1) = 0

and

∂tC(t, y2, y3; 0) + ry2∂2C(t, y2, y3; 0) + y3 (r − κ3λ) ∂3C(t, y2, y3; 0)

− rC(t, y2, y3; 0) +
1
2

3∑

i,j=2

σiσjyiyj∂ijC(t, y2, y3; 0)

+λ
(
C(t, y2, y3(1 + κ3); 1)− C(t, y2, y3; 0)

)
= 0

subject to the terminal conditions

C(T, y2, y3; 0) = G(y2, y3, 0), C(T, y2, y3; 1) = G(y2, y3, 1).

dY 1 = rY 1dt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW + κ3dM) 67



Two default-free assets, one defaultable asset with Recovery, PDE approach

The replicating strategy equals φ = (φ1, φ2, φ3)

φ2
t =

1
σ2κ3Y 2

t

(
κ3

3∑

i=2

σiyi∂iC(t, Y 2
t , Y 3

t−,Ht−)

− σ3

(
C(t, Y 2

t , Y 3
t−(1 + κ3); 1)− C(t, Y 2

t , Y 3
t−; 0)

))
,

φ3
t =

1
κ3Y 3

t−

(
C(t, Y 2

t , Y 3
t−(1 + κ3); 1)− C(t, Y 2

t , Y 3
t−; 0)

)
,

and where φ1
t is given by φ1

t Y
1
t + φ2

t Y
2
t + φ3

t Y
3
t = Ct.

dY 1 = rY 1dt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW + κ3dM) 68



Two default-free assets, one defaultable asset with Recovery, PDE approach

Example Consider a survival claim of the form

Y = G(Y 2
T , Y 3

T , HT ) = 11{T<τ}g(Y 3
T ).

Then the post-default pricing function Cg(· ; 1) vanishes identically, and the
pre-default pricing function Cg(· ; 0) solves

∂tC
g(· ; 0) + ry2∂2C

g(· ; 0) + y3 (r − κ3λ) ∂3C
g(· ; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijC
g(· ; 0)− (r + λ)Cg(· ; 0) = 0

Cg(T, y2, y3; 0) = g(y3)

Denote α = r − κ3λ and β = λ(1 + κ3).

Then, Cg(t, y2, y3; 0) = eβ(T−t)Cα,g,3(t, y3) where Cα,g,3(t, y) is the price of the
contingent claim g(YT ) in the Black-Scholes framework with the interest rate α and
the volatility parameter equal to σ3.

Let Ct be the current value of the contingent claim Y , so that

Ct = 11{t<τ}eβ(T−t)Cα,g,3(t, y3).

dY 1 = rY 1dt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW + κ3dM) 69



Two default-free assets, one defaultable asset with Recovery, PDE approach

The hedging strategy of the survival claim is, on the event {t < τ},

φ3
t Y

3
t = − 1

κ3
e−β(T−t)Cα,g,3(t, Y 3

t ) = − 1
κ3

Ct,

φ2
t Y

2
t =

σ3

σ2

(
Y 3

t e−β(T−t)∂yCα,g,3(t, Y 3
t )− φ3

t Y
3
t

)
.

dY 1 = rY 1dt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW + κ3dM) 70



Two default-free assets, one defaultable asset with Recovery, PDE approach

Hedging of a Recovery Payoff

The price Cg of the payoff G(Y 2
T , Y 3

T ,HT ) = 11{T≥τ}g(Y 2
T ) solves

∂tC
g(· ; 1) + ry∂yCg(· ; 1) +

1
2
σ2

2y2∂yyCg(· ; 1)− rCg(· ; 1) = 0

Cg(T, y; 1) = g(y)

hence Cg(t, y2, y3, 1) = Cr,g,2(t, y2) is the price of g(Y 2
T ) in the model Y 1, Y 2. Prior

to default, the price of the claim solves

∂tC
g(·; 0) + ry2∂2C

g(· ; 0) + y3 (r − κ3λ) ∂3C
g(· ; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijC
g(· ; 0)− (r + λ)Cg(· ; 0) = −λCg(t, y2; 1)

Cg(T, y2, y3; 0) = 0

Hence Cg(t, y2, y3; 0) = (1− eλ(t−T ))Cr,g,2(t, y2).

dY 1 = rY 1dt, dY 2 = Y 2(µ2dt + σ2dW ), dY 3 = Y 3(µ3dt + σ3dW + κ3dM) 71



Two defaultable assets with total default

Two defaultable assets with total default

Assume that Y 1 and Y 2 are defaultable tradeable assets with zero recovery and a
common default time τ .

dY i
t = Y i

t−(µidt + σidWt − dMt), i = 1, 2

Then
Y 1

t = 11{τ>t}Ỹ 1
t , Y 2

t = 11{τ>t}Ỹ 2
t

with
dỸ i

t = Ỹ i
t ((µi + λt)dt + σidWt), i = 1, 2

dY i
t = Y i

t−(µidt + σidWt − dMt), i = 1, 2 72



Two defaultable assets with total default

The wealth process V associated with the self-financing trading strategy (φ1, φ2)
satisfies for t ∈ [0, T ]

Vt = Y 1
t

(
V 1

0 +
∫ t

0

φ2
u dỸ 2,1

u

)

where Ỹ 2,1
t = Ỹ 2

t /Ỹ 1
t .

Obviously, this market is incomplete, however, some contingent claims are
hedgeable, as we present now.

dY i
t = Y i

t−(µidt + σidWt − dMt), i = 1, 2 73



Two defaultable assets with total default

Hedging Survival claim: martingale approach

A strategy (φ1, φ2) replicates a survival claim C = X11{τ>T} whenever we have

Ỹ 1
T

(
Ṽ 1

0 +
∫ T

0

φ2
t dỸ 2,1

t

)
= X

for some constant Ṽ 1
0 and some F-predictable process φ2.

It follows that if σ1 6= σ2, any survival claim C = X11{τ>T} is attainable.

Let Q̃ be a probability measure such that Ỹ 2,1
t is an F-martingale under Q̃. Then

the pre-default value Ũt(C) at time t of (X, 0, τ) equals

Ũt(C) = Ỹ 1
t EQ̃

(
X(Ỹ 1

T )−1 | Ft

)
.

dY i
t = Y i

t−(µidt + σidWt − dMt), i = 1, 2 74



Two defaultable assets with total default

Example: Call option on a defaultable asset We assume that Y 1
t = D(t, T )

represents a defaultable ZC-bond with zero recovery, and Y 2
t = 11{t<τ}Ỹ 2

t is a
generic defaultable asset with total default. The payoff of a call option written on
the defaultable asset Y 2 equals

CT = (Y 2
T −K)+ = 11{T<τ}(Ỹ 2

T −K)+

The replication of the option reduces to finding a constant x and an F-predictable
process φ2 that satisfy

x +
∫ T

0

φ2
t dỸ 2,1

t = (Ỹ 2
T −K)+.

Assume that the volatility σ1,t − σ2,t of Ỹ 2,1 is deterministic. Let
F̃2(t, T ) = Ỹ 2

t (D̃(t, T ))−1

dY i
t = Y i

t−(µidt + σidWt − dMt), i = 1, 2 75



Two defaultable assets with total default

The credit-risk-adjusted forward price of the option written on Y 2 equals

C̃t = Ỹ 2
t N

(
d+(F̃2(t, T ), t, T )

)−KD̃(t, T )N (
d−(F̃2(t, T ), t, T )

)
,

where

d±(f̃ , t, T ) =
ln f̃ − ln K ± 1

2v2(t, T )
v(t, T )

and

v2(t, T ) =
∫ T

t

(σ1,u − σ2,u)2 du.

Moreover the replicating strategy φ in the spot market satisfies for every t ∈ [0, T ],
on the set {t < τ},

φ1
t = −KN (

d−(F̃2(t, T ), t, T )
)
, φ2

t = N (
d+(F̃2(t, T ), t, T )

)
.

dY i
t = Y i

t−(µidt + σidWt − dMt), i = 1, 2 76



Two defaultable assets with total default

Hedging Survival claim: PDE approach

Assume that σ1 6= σ2. Then the pre-default pricing function v satisfies the PDE

∂tC + y1

(
µ1 + λ− σ1

µ2 − µ1

σ2 − σ1

)
∂1C + y2

(
µ2 + λ− σ2

µ2 − µ1

σ2 − σ1

)
∂2C

+
1
2

(
y2
1σ2

1∂11C + y2
2σ2

2∂22C + 2y1y2σ1σ2∂12C
)

=
(

µ1 + λ− σ1
µ2 − µ1

σ2 − σ1

)
C

with the terminal condition C(T, y1, y2) = G(y1, y2).

dY i
t = Y i

t−(µidt + σidWt − dMt), i = 1, 2 77



Two defaultable assets with total default

Hedging defaultable claims with CDSs

Our aim is to hedge
Y = 11{T≥τ}Zτ + 11{T<τ}X.

using two CDS with maturities Ti, rates κi and protection payment δi. We assume
r = 0. Let ζi

t defined as

mi
t = EQ

(∫ T

0

δi
uGuλu du− κi

∫ T

0

Gu du
∣∣∣Ft

)
, dmi

t = ζi
tdWt

and

mZ
t = EQ(−

∫ ∞

0

ZudGu + GT X|Ft), dmZ
t = ζZ

t dWt
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Two defaultable assets with total default

Assume that there exist F-predictable processes φ1, φ2 such that

2∑

i=1

φi
t

(
δi
t − S̃i

t(κi)
)

= Zt − ỹt,
2∑

i=1

φi
tζ

i
t = ζt,

where ỹ is given by

ỹt =
1
Gt
EQ

(
−

∫ T

t

Zu dGu + GT X
∣∣∣Ft

)
.

Let φ0
t = Vt(φ)−∑2

i=1 φi
tS

i
t(κi), where the process V (φ) is given by

dVt(φ) =
2∑

i=1

φi
t

(
dSi

t(κi) + dDi
t

)

with the initial condition V0(φ) = EQ(Y ). Then the self-financing trading strategy
φ = (φ0, φ1, φ2) is admissible and is a replicating strategy for a defaultable claim
(X, 0, Z, τ).
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Valuation of Credit Default Swaptions

Valuation of Credit Default Swaptions
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Valuation of Credit Default Swaptions

A forward CDS issued at time s, with starting date U , maturity T , and recovery δ

at default is a defaultable claim (0, A, Z, τ) where

dAt = −κ11]U,T ](t) dt, Zt = δt11[U,T ](t).

• The CDS rate κ is Fs-measurable.

• The F-adapted process δ : [U, T ] → R represents the default protection.

The value of the forward CDS equals, for every t ∈ [s, U ],

St(κ) = Bt EQ
(
11{U<τ≤T}B−1

τ δτ

∣∣∣Gt

)
− κBt EQ

( ∫

]t∧U,τ∧T ]

B−1
u du

∣∣∣Gt

)
.
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Valuation of Credit Default Swaptions

Valuation of a Forward CDS

The value of a credit default swap started at s, equals, for every t ∈ [s, U ],

St(κ) = 11{t<τ}
Bt

Gt
EQ

(
−

∫ T

U

B−1
u δu dGu − κ

∫

]U,T ]

B−1
u Gu du

∣∣∣Ft

)
.

Note that St(κ) = 11{t<τ}S̃t(κ) where the F-adapted process S̃(κ) is the pre-default
value. Moreover

S̃t(κ) = P̃ (t, U, T )− κ Ã(t, U, T )

where

• P̃ (t, U, T ) is the pre-default value of the protection leg,

• Ã(t, U, T ) is the pre-default value of the fee leg per one unit of κ.
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Valuation of Credit Default Swaptions

Credit Default Swaption

A credit default swaption is a call option with expiry date R ≤ U and zero strike
written on the value of the forward CDS issued at time 0 ≤ s < R,
with start date U , maturity T , and an Fs-measurable rate κ.

The swaption’s payoff CR at expiry equals CR = (SR(κ))+.

For a forward CDS with an Fs-measurable rate κ we have, for every t ∈ [s, U ],

St(κ) = 11{t<τ}Ã(t, U, T )(κ(t, U, T )− κ).
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Valuation of Credit Default Swaptions

It is clear that
CR = 11{R<τ}Ã(R, U, T )(κ(R,U, T )− κ)+.

A credit default swaption is formally equivalent to a call option on the forward
CDS rate with strike κ. This option is knocked out if default occurs prior to R.

84



Valuation of Credit Default Swaptions

The price at time t ∈ [s,R] of a credit default swaption equals

Ct = 11{t<τ}
Bt

Gt
EQ

(
GR

BR
Ã(R,U, T )(κ(R, U, T )− κ)+

∣∣∣Ft

)
.

Define an equivalent probability measure Q̂ on (Ω,FR) by setting

dQ̂
dQ

=
MA

R

MA
0

, Q-a.s.

where the (Q,F)-martingale MA is given by

MA
t = EQ

(∫

]U,T ]

B−1
u Gu du

∣∣∣Ft

)
.

The price of the credit default swaption equals, for every t ∈ [s,R],

Ct = 11{t<τ}Ã(t, U, T )EQ̂
(
(κ(R,U, T )− κ)+

∣∣Ft

)
= 11{t<τ}C̃t.

The forward CDS rate (κ(t, U, T ), t ≤ R) is a (Q̂,F)-martingale.
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Valuation of Credit Default Swaptions

Brownian Case

• Let the filtration F be generated by a Brownian motion W under Q∗.

• Since MP t = −EQ
( ∫ T

U
B−1

u δu dGu

∣∣∣Ft

)
and MA are strictly positive

(Q,F)-martingales, we have that

dMP
t = MP

t σP
t dWt, dMA

t = MA
t σA

t dWt,

for some F-adapted processes σP and σA.

The forward CDS rate (κ(t, U, T ), t ∈ [0, R]) is (Q̂,F)-martingale and

dκ(t, U, T ) = κ(t, U, T )σκ
t dŴt

where σκ = σP − σA and the (Q̂,F)-Brownian motion Ŵ equals

Ŵt = Wt −
∫ t

0

σA
u du, ∀ t ∈ [0, R].
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Valuation of Credit Default Swaptions

Assume that the volatility σκ = σP − σA of the forward CDS spread is
deterministic. Then the pre-default value of the credit default swaption
with strike level κ and expiry date R equals, for every t ∈ [0, U ],

C̃t = Ãt

(
κt N

(
d+(κt, U − t)

)− κN
(
d−(κt, U − t)

))

where κt = κ(t, U, T ) and Ãt = Ã(t, U, T ). Equivalently,

C̃t = P̃t N
(
d+(κt, t, R)

)− κ Ãt N
(
d−(κt, t, R)

)

where P̃t = P̃ (t, U, T ) and

d±(κt, t, R) =
log(κt/κ)± 1

2

∫ R

t
(σκ(u))2 du√∫ R

t
(σκ(u))2 du

.
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